ArticleOriginal scientific text

Title

Uniform stability and semi-stability of motions in dynamical systems on metric spaces

Authors 1

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Abstract

Some stability properties of motions in pseudo-dynamical systems and semi-systems are studied.

Keywords

stability, semi-stability, limit set, prolongational limit set, generalized prolongational limit set, asymptotic equivalence

Bibliography

  1. N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems, Springer, Berlin, 1970.
  2. A. Pelczar, Semi-stability of motions and regular dependence of limit sets on points in general semi-systems, Ann. Polon. Math. 42 (1983), 263-282.
  3. A. Pelczar, Limit sets and prolongations in generalized (multivalued) semi-systems, preprint WS-363, Vrije Universiteit Amsterdam, Faculteit Wiskunde en Informatica, 1990.
  4. A. Pelczar, A contribution to the theory of generalized semi-systems: asymptotic equivalence and generalized prolongational limit sets, to appear.
  5. J. Sabine de Lis, An elementary explicit example of unbounded limit behaviour on the plane, Rev. Acad. Canaria Cienc. 5 (1) (1993), 41-46.
  6. A. Trzepizur, L'équivalence asymptotique au sens de Ważewski: un analogue d'un théorème de Levinson, Bull. Polish Acad. Sci. Math. 36 (1988), 39-46.
  7. T. Ważewski, Sur la coïncidence asymptotique des intégrales de deux systèmes d'équations différentielles, Bull. Acad. Polon. Sci. Lettres Sér. A Sci. Math. 1949, 147-150.
Pages:
115-136
Main language of publication
English
Received
1994-07-07
Accepted
1995-01-10
Published
1996
Exact and natural sciences