PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1996 | 63 | 1 | 71-88
Tytuł artykułu

Prolongement dans des classes ultradifférentiables et propriétés de régularité des compacts de $ℝ^n$

Treść / Zawartość
Warianty tytułu
Języki publikacji
FR
Abstrakty
EN
Considering jets, or functions, belonging to some strongly non-quasianalytic Carleman class on compact subsets of $ℝ^n$, we extend them to the whole space with a loss of Carleman regularity. This loss is related to geometric conditions refining Łojasiewicz's "regular separation" or Whitney's "property (P)".
Rocznik
Tom
63
Numer
1
Strony
71-88
Opis fizyczny
Daty
wydano
1996
otrzymano
1994-12-19
Twórcy
  • CNRS-URA 751, Mathématiques-Bât. M2, Université des Sciences et Technologies de Lille, F-59655 Villeneuve D'Ascq Cedex, France
Bibliografia
  • [Bi] E. Bierstone, Differentiable functions, Bol. Soc. Brasil. Mat. 11 (1980), 139-190.
  • [BBMT] J. Bonet, R. W. Braun, R. Meise and B. A. Taylor, Whitney's extension theorem for nonquasianalytic functions, Studia Math. 99 (1991), 156-184.
  • [B] J. Bruna, An extension theorem of Whitney type for non-quasianalytic classes of functions, J. London Math. Soc. 22 (1980), 495-505.
  • [CC] J. Chaumat et A.-M. Chollet, Théorème de Whitney dans des classes ultra différentiables, Publ. Inst. Rech. Math. Lille 28 (1992), VIII.1-VIII.31 et C. R. Acad. Sci. Paris 315 (1992), 901-906.
  • [Dr] B. Droste, Holomorphic approximation of ultradifferentiable functions, Math. Ann. 257 (1981), 293-316.
  • [L] A. Lambert, Quelques théorèmes de décomposition des ultradistributions, Ann. Inst. Fourier (Grenoble) 29 (3) (1979), 57-100.
  • [M] B. Malgrange, Ideals of Differentiable Functions, Tata Institute for Fundamental Research, Bombay and Oxford Univ. Press, 1966.
  • [P] W. Pleśniak, Extension and polynomial approximation of ultradifferentiable functions in $ℝ^N$, Bull. Soc. Roy. Sci. Liège 63 (1994), 393-402.
  • [T] J.-C. Tougeron, Idéaux de fonctions différentiables, Ergeb. Math. Grenzgeb. 71, Springer, 1972.
  • [Wa] K. Wachta, Prolongation des fonctions $C^∞$, Bull. Polish Acad. Sci. Math. 31 (1983), 245-248.
  • [W] H. Whitney, Functions differentiable on the boundaries of regions, Ann. of Math. 35 (1934), 482-485.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-apmv63z1p71bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.