We first give a general growth version of the theorem of Bernstein-Walsh-Siciak concerning the rate of convergence of the best polynomial approximation of holomorphic functions on a polynomially convex compact subset of an affine algebraic manifold. This can be considered as a quantitative version of the well known approximation theorem of Oka-Weil. Then we give two applications of this theorem. The first one is a generalization to several variables of Winiarski's theorem relating the growth of an entire function to the rate of convergence of its best polynomial approximation; the second application concerns the extension with growth of an entire function from an algebraic submanifold to the whole space.
Laboratoire d'Analyse, Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse Cedex, France
Bibliografia
[B-T] E. Bedford and B. A. Taylor, Plurisubharmonic functions with logarithmic singularities, Ann. Inst. Fourier (Grenoble) 38 (4) (1988), 133-171.
[Be] S. Bernstein, Sur l'ordre de la meilleure approximation polynomiale des fonctions continues, Bruxelles, 1912.
[Bj] J.-E. Björk, On extensions of holomorphic functions satisfying a polynomial growth condition on algebraic varieties in $ℂ^n$, Ann. Inst. Fourier (Grenoble) 24 (4) (1974), 157-165.
[De] J.-P. Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. France 19 (1985).
[D-M] P. B. Djakov and B. S. Mityagin, The structure of polynomial ideals in the algebra of entire functions, preprint of the Institute of Mathematics, Polish Academy of Sciences, no. 123, 1977.
[H] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, 1973.
[L-G] P. Lelong and L. Gruman, Entire Functions of Several Variables, Springer, 1986.
[Ng] T. V. Nguyen, Croissance et meilleure approximation polynomiale des fonctions entières, Ann. Polon. Math. 24 (1972), 325-333.
[No] K. J. Nowak, The extension of holomorphic functions of polynomial growth on algebraic sets in $ℂ^n$, Osnabrücker Schriften zur Math., 1984.
[R,1] L. L. Ronkin, Continuation with estimates of holomorphic functions on sets of zeros of polynomials, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 128, 36 (1981), 89-103.
[R,2] L. L. Ronkin, Entire functions, in: Encyclopedia of Math. Sci., Several Complex Variables III, Springer, 1986, 1-30.
[R-W] K. Rusek and T. Winiarski, Criteria for regularity of holomorphic mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 471-475.
[Sa] A. Sadullaev, An estimate for polynomials on analytic sets, Math. USSR-Izv. 20 (1980), 493-502.
[Si,1] J. Siciak, On some extermal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357.
[Si,2] J. Siciak, Extremal plurisubharmonic functions in $ℂ^n$, Ann. Polon. Math. 39 (1981), 175-211.
[Si,3] J. Siciak, Approximation by transcendental polynomials, Ann. Polon. Math. 46 (1985), 299-309.
[Sk] H. Skoda, Morphismes surjectifs et fibrés linéaires semi-positifs, dans : Séminaire P. Lelong-H. Skoda (Analyse), Lecture Notes in Math. 694, Springer, 1978.
[Wa] J. Walsh, Interpolation and Approximation by Rational Functions, Boston, 1960.
[Wi,1] T. Winiarski, Approximation and interpolation of entire functions, Ann. Polon. Math. 23 (1970), 259-273.
[Wi,2] T. Winiarski, Application of approximation and interpolation methods to the examination of entire functions of n variables, Ann. Polon. Math. 28 (1973), 98-121.
[Za] V. P. Zakharyuta, Extremal plurisubharmonic functions, orthogonal polynomials and the Bernstein-Walsh theorem for analytic functions of several complex variables, Ann. Polon. Math. 33 (1976), 137-148 (in Russian).
[Ze,1] A. Zeriahi, Meilleure approximation polynomiale et croissance des fonctions holomorphes sur une variété algébrique affine, Ann. Inst. Fourier (Grenoble) 37 (2) (1987), 79-104.
[Ze,2] A. Zeriahi, Fonction de Green pluricomplexe à pôle à l'infini sur un espace de Stein parabolique et applications, Math. Scand. 69 (1991), 89-126.
[Ze,3] A. Zeriahi, Ensembles pluripolaires exceptionnels pour la croissance partielle des fonctions holomorphes, Ann. Polon. Math. 50 (1989), 81-91.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-apmv63z1p35bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.