ArticleOriginal scientific text

Title

On a nonlinear second order periodic boundaryvalue problem with Carathéodory functions

Authors 1, 1

Affiliations

  1. Department of Mathematics, Jilin University, Changchun 130023, P.R. China

Abstract

The periodic boundary value problem u''(t) = f(t,u(t),u'(t)) with u(0) = u(2π) and u'(0) = u'(2π) is studied using the generalized method of upper and lower solutions, where f is a Carathéodory function satisfying a Nagumo condition. The existence of solutions is obtained under suitable conditions on f. The results improve and generalize the work of M.-X. Wang et al. [5].

Keywords

two-point boundary value problems, upper and lower solutions, Nagumo condition, existence, Carathéodory functions

Bibliography

  1. A. Adje, Sur et sous-solutions généralisées et problèmes aux limites du second ordre, Bull. Soc. Math. Belgique Sér. B 42 (1990), 347-368.
  2. J. Bebernes, A simple alternative problem for finding periodic solutions of second order ordinary differential systems, Proc. Amer. Math. Soc. 42 (1974), 121-127.
  3. A. Cabada and J. J. Nieto, A generalization of the monotone iterative technique for nonlinear second-order periodic boundary value problems, J. Math. Anal. Appl. 151 (1990), 181-189.
  4. J. J. Nieto, Nonlinear second-order periodic boundary value problems with Carathéodory functions, Appl. Anal. 34 (1989), 111-128.
  5. M.-X. Wang, A. Cabada and J. J. Nieto, Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions, Ann. Polon. Math. 58 (1993), 221-235.
Pages:
283-291
Main language of publication
English
Received
1994-11-20
Published
1995
Exact and natural sciences