ArticleOriginal scientific text
Title
Oscillation of a logistic equation with delay and diffusion
Authors 1, 2
Affiliations
- Department of Mathematics, Jinzhou Teacher's College, Jinzhou, Hubei 434100, P.R. China
- Department of Mathematics, Tsing Hua University, Hsinchu 30043, Taiwan, R.O.C.
Abstract
This paper establishes oscillation theorems for a class of functional parabolic equations which arises from logistic population models with delays and diffusion.
Keywords
oscillation theorem, functional parabolic differential equation, logistic equation
Bibliography
- A. Ardito and P. Ricciardi, Existence and regularity for linear delay partial differential equations, Nonlinear Anal. 4 (1980), 411-414.
- D. D. Bainov and D. P. Mishev, Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, Bristol, 1991.
- K. Gopalsamy, M. R. S. Kulenovic and G. Ladas, Time lags in a 'food limited' population model, Appl. Anal. 31 (1988), 225-237.
- K. Gopalsamy, M. R. S. Kulenovic and G. Ladas, Oscillations of a system of delay logistic equations, J. Math. Anal. Appl. 146 (1990), 192-202.
- I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations, Clarendon Press, Oxford, 1991.
- B. R. Hunt and J. A. Yorke, When all solutions of
oscillate, J. Differential Equations 53 (1984), 139-145. - K. Kreith and G. Ladas, Allowable delays for positive diffusion processes, Hiroshima Math. J. 15 (1985), 437-443.
- G. Ladas and I. P. Stavroulakis, On delay differential inequalities of first order, Funkcial. Ekvac. 25 (1982), 105-113.
- C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc. 200 (1974), 395-418.
- J. Turo, Generalized solutions of mixed problems for quasilinear hyperbolic systems of functional partial differential equations in the Schauder canonic form, Ann. Polon. Math. 50 (1989), 157-183.