ArticleOriginal scientific text

Title

Intersection theory in complex analytic geometry

Authors 1

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Abstract

We present a construction of an intersection product of arbitrary complex analytic cycles based on a pointwise defined intersection multiplicity.

Keywords

analytic cycles, multiplicity of proper and improper intersection

Bibliography

  1. [AM1] R. Achilles and M. Manaresi, Multiplicities for improper intersections of analytic subsets, Rend. Sem. Mat. Univ. Pol. Torino 48 (1990), 539-552.
  2. [AM2] R. Achilles and M. Manaresi, Analytic deviation of ideals and intersection theory of analytic spaces, Manuscripta Math. 80 (1993), 291-308.
  3. [AM3] R. Achilles and M. Manaresi, An algebraic characterization of distinguished varieties of intersections, Rev. Roumaine Math. Pures Appl. 38 (1993), 569-578.
  4. [ATW] R. Achilles, P. Tworzewski and T. Winiarski, On improper isolated intersection in complex analytic geometry, Ann. Polon. Math. 51 (1990), 21-36.
  5. [AV] R. Achilles and W. Vogel, On multiplicities for improper intersections, J. Algebra 168 (1994), 123-142.
  6. [Ch] E. M. Chirka, Complex Analytic Sets, Kluwer Acad. Publ., 1989.
  7. [CT] E. Cygan and P. Tworzewski, Proper intersection multiplicity and regular separation of analytic sets, Ann. Polon. Math. 59 (1994), 293-298.
  8. [De] J. P. Demailly, Courants positifs et théorie de l'intersection, Gaz. Math. 53 (1992), 131-159.
  9. [Dr] R. Draper, Intersection theory in analytic geometry, Math. Ann. 180 (1969), 175-204.
  10. [F] W. Fulton, Intersection Theory, Springer, Berlin, 1984.
  11. [G1] L. J. van Gastel, Excess intersections, Thesis, Univ. of Utrecht, The Netherlands, 1989.
  12. [G2] L. J. van Gastel, Excess intersections and correspondence principle, Invent. Math. 103 (1991), 197-221.
  13. [Ł1] S. Łojasiewicz, Ensembles semi-analytiques, I.H.E.S., Bures-sur-Yvette, 1965.
  14. [Ł2] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991.
  15. [P1] A. Płoski, Une évaluation pour les sous-ensembles analytiques complexes, Bull. Polish Acad. Sci. Math. 31 (1983), 259-262.
  16. [P2] A. Płoski, Multiplicity and the Łojasiewicz exponent, preprint 359, Polish Academy of Sciences, Warszawa, 1986.
  17. [R] S. Rams, Convergence of holomorphic chains, preprint, 1995.
  18. [S] E. Selder, Eine algebraische Definition lokaler analytischer Schnittmultiplizitäten, Rev. Roumaine Math. Pures Appl. 29 (1984), 417-432.
  19. [SV] J. Stückrad and W. Vogel, An algebraic approach to the intersection theory, in: The Curves Seminar at Queen's University, Vol. II, Queen's Papers in Pure and Appl. Math. 61, Kingston, Ont., 1982, 1-32.
  20. [T] P. Tworzewski, Isolated intersection multiplicity and regular separation of analytic sets, Ann. Polon. Math. 58 (1993), 213-219.
  21. [TW1] P. Tworzewski and T. Winiarski, Analytic sets with proper projections, J. Reine Angew. Math. 337 (1982), 68-76.
  22. [TW2] P. Tworzewski and T. Winiarski, Continuity of intersection of analytic sets, Ann. Polon. Math. 42 (1983), 387-393.
  23. [TW3] P. Tworzewski and T. Winiarski, Cycles of zeroes of holomorphic mappings, Bull. Polish Acad. Sci. Math. 37 (1989), 95-101.
  24. [V] W. Vogel, Results on Bezout's Theorem, Tata Lecture Notes, Bombay, Vol. 74, Springer, Berlin, 1984.
  25. [Wh] H. Whitney, Complex Analytic Varieties, Addison-Wesley, 1972.
  26. [W1] T. Winiarski, Continuity of total number of intersection, Ann. Polon. Math. 47 (1986), 155-178.
  27. [W2] T. Winiarski, Local properties of intersections, in: Deformations of Math. Structures, Kluwer, 1989, 141-150.
Pages:
177-191
Main language of publication
English
Received
1995-06-14
Published
1995
Exact and natural sciences