ArticleOriginal scientific text

Title

On extremal mappings in complex ellipsoids

Authors 1

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Abstract

Using a generalization of [Pol] we present a description of complex geodesics in arbitrary complex ellipsoids.

Keywords

complex ellipsoid, geodesics, extremal mapping

Bibliography

  1. [Hay-Ken] W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Vol. I, Academic Press, 1976.
  2. [Jar-Pfl] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, 1993.
  3. [Jar-Pfl-Zei] M. Jarnicki, P. Pflug, and R. Zeinstra, Geodesics for convex complex ellipsoids, Ann. Scuola Norm. Sup. Pisa 20 (1993), 535-543.
  4. [Pan] M.-Y. Pang, Smoothness of the Kobayashi metric of non-convex domains, Internat. J. Math. 4 (1993), 953-987.
  5. [Pfl-Zwo] P. Pflug and W. Zwonek, The Kobayashi metric for non-convex complex ellipsoids, preprint, 1994.
  6. [Pol] E. A. Poletskiĭ, The Euler-Lagrange equations for extremal holomorphic mappings of the unit disk, Michigan Math. J. 30 (1983), 317-333.
  7. [Zei] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. I: Fixed-Point Theorems, Springer, 1986.
Pages:
83-96
Main language of publication
English
Received
1995-01-09
Published
1995
Exact and natural sciences