ArticleOriginal scientific text
Title
Convex and monotone operator functions
Authors 1, 2
Affiliations
- Department of Applied Mathematics, Regional Engineering College, Jalandhar, Punjab, India
- Department of Mathematics, Panjab University, Chandigarh, India
Abstract
The purpose of this note is to provide characterizations of operator convexity and give an alternative proof of a two-dimensional analogue of a theorem of Löwner concerning operator monotonicity.
Keywords
operator monotone function, operator convex function
Bibliography
- T. Ando, Topics on Operator Inequalities, lecture notes (mimeographed), Hokkaido University, Sapporo, 1978.
- C. Davis, Notions generalizing convexity for functions defined on spaces of matrices, in: Proc. Sympos. Pure Math. 7, Amer. Math. Soc., 1963, 187-201.
- W. F. Donoghue, Jr., Monotone Matrix Functions and Analytic Continuation, Springer, Heidelberg, 1974.
- F. Hansen and G. K. Pedersen, Jensen's inequality for operators and Löwner's theorem, Math. Ann. 258 (1982), 229-241.
- A. Korányi, On a class of analytic functions of several variables, Trans. Amer. Math. Soc. 101 (1961), 521-554.
- F. Kraus, Über konvexe Matrixfunktionen, Math. Z. 41 (1936), 18-41.
- C. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216.
- A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973.
- H. Vasudeva, On monotone matrix functions of two variables, Trans. Amer. Math. Soc. 176 (1973), 303-318.