ArticleOriginal scientific text

Title

Effective formulas for complex geodesics in generalized pseudoellipsoids with applications

Authors 1

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Abstract

We introduce a class of generalized pseudoellipsoids and we get formulas for their complex geodesics in the convex case. Using these formulas we get a description of automorphisms of the pseudoellipsoids. We also solve the problem of biholomorphic equivalence of convex complex ellipsoids without any sophisticated machinery.

Keywords

complex geodesics, generalized pseudoellipsoids, biholomorphic equivalence of ellipsoids

Bibliography

  1. [B] S. Bell, The Bergman kernel function and proper holomorphic mappings, Trans. Amer. Math. Soc. 270 (1983), 685-691.
  2. [BFKKMP] B. E. Blank, D. Fan, D. Klein, S. G. Krantz, D. Ma and M.-Y. Pang, The Kobayashi metric of a complex ellipsoid in ℂ², Experimental Math. 1 (1992), 47-55.
  3. [D] S. Dineen, The Schwarz Lemma, Clarendon Press, 1989.
  4. [DT] S. Dineen and R. M. Timoney, Complex geodesics on convex domains, in: Progress in Functional Analysis, K. D. Bierstedt, J. Bonet, J. Horváth and M. Maestre (eds.), Elsevier, 1992, 333-365.
  5. [DP] G. Dini and A. S. Primicerio, Localization principle of automorphisms on generalized pseudoellipsoids, preprint.
  6. [Ga] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
  7. [Ge] G. Gentili, Regular complex geodesics in the domain Dn={(z,...,zn)n|z|+...+|zn<1}, in: Lecture Notes in Math. 1275, Springer, 1987, 235-252.
  8. [JP] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, 1993.
  9. [JPZ] M. Jarnicki, P. Pflug and R. Zeinstra, Geodesics for convex complex ellipsoids, Ann. Scuola Norm. Sup. Pisa 20 (1993), 535-543.
  10. [KU] W. Kaup and H. Upmeier, Banach spaces with biholomorphically equivalent unit balls are isomorphic, Proc. Amer. Math. Soc. 58 (1976), 129-133.
  11. [KKM] A. Kodama, S. Krantz and D. Ma, A characterization of generalized complex ellipsoids in n and related results, Indiana Univ. Math. J. 41 (1992), 173-195.
  12. [L] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-479.
  13. [N] T. Naruki, The holomorphic equivalence problem for a class of Reinhardt domains, Publ. RIMS Kyoto Univ. 4 (1968), 527-543.
  14. [P] E. A. Poletskii, The Euler-Lagrange equations for extremal holomorphic mappings of the unit disk, Michigan Math. J. 30 (1983), 317-333.
  15. [R] W. Rudin, Holomorphic maps that extend to automorphisms of a ball, Proc. Amer. Math. Soc. 81 (1981), 429-432.
Pages:
261-294
Main language of publication
English
Received
1994-06-16
Accepted
1995-02-27
Published
1995
Exact and natural sciences