ArticleOriginal scientific text

Title

A free boundary stationary magnetohydrodynamic problem in connection with the electromagnetic casting process

Authors 1

Affiliations

  1. Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland

Abstract

We investigate the behaviour of the meniscus of a drop of liquid aluminium in the neighbourhood of a state of equilibrium under the influence of weak electromagnetic forces. The mathematical model comprises both Maxwell and Navier-Stokes equations in 2D. The meniscus is governed by the Young-Laplace equation, the data being the jump of the normal stress. To show the existence and uniqueness of the solution we use the classical implicit function theorem. Moreover, the differentiability of the operator solving this problem is established.

Keywords

free boundary, local existence and uniqueness, implicit function theorem, steady plane magnetohydrodynamics, electromagnetic casting

Bibliography

  1. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math. 17 (1964), 35-92.
  2. J. Bemelmans, Gleichgewichtsfiguren zäher Flüssigkeiten mit Oberflächenspannung, Analysis 1 (1981), 241-282.
  3. O. Besson, J. Bourgeois, P. A. Chevalier, J. Rappaz and R. Touzani, Numerical modelling of electromagnetic casting processes, J. Comput. Phys. 92 (2) (1991), 482-507.
  4. H. Cartan, Cours de calcul différentiel, Hermann, Paris, 1977.
  5. B. Dacorogna, Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals, Springer, Berlin, 1982.
  6. G. Duvaut et J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972.
  7. V. Girault and P. A. Raviart, Finite Elements Methods for Navier-Stokes Equations. Theory and Algorithms, Springer, Berlin, 1986.
  8. J. Giroire and J. C. Nedelec, Numerical solution of the exterior Neumann problem using a double layer potential, Math. Comput. 32 (1987), 973-990.
  9. M. N. Le Roux, Méthode d'éléments finis pour la résolution numérique de problèmes extérieurs en dimension 2, RAIRO Anal. Numér. 11 (1977), 27-60.
  10. M. N. Le Roux, Résolution numérique du problème du potentiel dans le plan par une méthode variationnelle d'éléments finis, Thèse, L'Université de Rennes, U.E.R., Mathématiques et Informatique, 1974.
  11. J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967.
  12. J. C. Nedelec, Approximation des équations intégrales en mécanique et en physique, Rapport du Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, 1977.
  13. J. Rappaz and R. Touzani, On a two-dimensional magnetohydrodynamic problem I. Modelling and analysis, RAIRO Modél. Math. Anal. Numér. 26 (2) (1991), 347-364.
  14. V. A. Solonnikov, Free boundary problems and problems in noncompact domains for the Navier-Stokes equations, in: Proc. Internat. Congr. Math., Berkeley, California, 1986, Vol. 2, 1987, 1113-1122.
  15. V. A. Solonnikov and V. E. Shchadilov, On a boundary value problem for a stationary system of Navier-Stokes equations, Trudy Mat. Inst. Steklov. 125 (1973) (in Russian); English transl.: Proc. Steklov Inst. Math. 125 (1973), 186-199.
  16. R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Elsevier, Amsterdam, 1985.
Pages:
195-223
Main language of publication
English
Received
1993-03-03
Accepted
1993-05-30
Published
1995
Exact and natural sciences