ArticleOriginal scientific text
Title
On the uniqueness of continuous solutions of functional equations
Authors 1
Affiliations
- Institute of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland
Abstract
We consider the problem of the vanishing of non-negative continuous solutions ψ of the functional inequalities
(1) ψ(f(x)) ≤ β(x,ψ(x))
and
(2) α(x,ψ(x)) ≤ ψ(f(x)) ≤ β(x,ψ(x)), where x varies in a fixed real interval I. As a consequence we obtain some results on the uniqueness of continuous solutions φ :I → Y of the equation
(3) φ(f(x)) = g(x,φ(x)),
where Y denotes an arbitrary metric space.
Keywords
functional equation, functional inequality, periodic point, cycle
Bibliography
- B. Gaweł, A linear functional equation and its dynamics, in: European Conference on Iteration Theory, Batschuns, 1989, Ch. Mira et al. (eds.), World Scientific, 1991, 127-137.
- B. Gaweł, On the uniqueness of continuous solutions of an iterative functional inequality, in: European Conference on Iteration Theory, Lisbon, 1991, J. P. Lampreia et al. (eds.), World Sci., 1992, 126-135.
- W. Jarczyk, Nonlinear functional equations and their Baire category properties, Aequationes Math. 31 (1986), 81-100.
- M. Krüppel, Ein Eindeutigkeitssatz für stetige Lösungen von Funktionalgleichungen, Publ. Math. Debrecen 27 (1980), 201-205.
- M. Kuczma, Functional Equations in a Single Variable, Monografie Mat. 46, PWN-Polish Scientific Publishers, 1968.
- M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Encyclopedia Math. Appl. 32, Cambridge University Press, 1990.