ArticleOriginal scientific text

Title

On the uniqueness of continuous solutions of functional equations

Authors 1

Affiliations

  1. Institute of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland

Abstract

We consider the problem of the vanishing of non-negative continuous solutions ψ of the functional inequalities (1) ψ(f(x)) ≤ β(x,ψ(x)) and (2) α(x,ψ(x)) ≤ ψ(f(x)) ≤ β(x,ψ(x)), where x varies in a fixed real interval I. As a consequence we obtain some results on the uniqueness of continuous solutions φ :I → Y of the equation (3) φ(f(x)) = g(x,φ(x)), where Y denotes an arbitrary metric space.

Keywords

functional equation, functional inequality, periodic point, cycle

Bibliography

  1. B. Gaweł, A linear functional equation and its dynamics, in: European Conference on Iteration Theory, Batschuns, 1989, Ch. Mira et al. (eds.), World Scientific, 1991, 127-137.
  2. B. Gaweł, On the uniqueness of continuous solutions of an iterative functional inequality, in: European Conference on Iteration Theory, Lisbon, 1991, J. P. Lampreia et al. (eds.), World Sci., 1992, 126-135.
  3. W. Jarczyk, Nonlinear functional equations and their Baire category properties, Aequationes Math. 31 (1986), 81-100.
  4. M. Krüppel, Ein Eindeutigkeitssatz für stetige Lösungen von Funktionalgleichungen, Publ. Math. Debrecen 27 (1980), 201-205.
  5. M. Kuczma, Functional Equations in a Single Variable, Monografie Mat. 46, PWN-Polish Scientific Publishers, 1968.
  6. M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Encyclopedia Math. Appl. 32, Cambridge University Press, 1990.
Pages:
231-239
Main language of publication
English
Received
1993-10-04
Accepted
1994-05-13
Published
1995
Exact and natural sciences