ArticleOriginal scientific text

Title

The automorphism groups of Zariski open affine subsets of the affine plane

Authors 1

Affiliations

  1. Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland

Abstract

We study some properties of the affine plane. First we describe the set of fixed points of a polynomial automorphism of ℂ². Next we classify completely so-called identity sets for polynomial automorphisms of ℂ². Finally, we show that a sufficiently general Zariski open affine subset of the affine plane has a finite group of automorphisms.

Keywords

polynomial automorphisms, the set of fixed points of a polynomial automorphism, the affine plane

Bibliography

  1. [A-M] S. Abhyankar and T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148-166.
  2. [Iit1] S. Iitaka, On logarithmic Kodaira dimension of algebraic varieties, in: Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, 1977, 178-189.
  3. [Iit2] S. Iitaka, Birational Geometry for Open Varieties, Les Presses de L'Université de Montréal, 1981.
  4. [Jel1] Z. Jelonek, Identity sets for polynomial automorphisms, J. Pure Appl. Algebra 76 (1991), 333-339.
  5. [Jel2] Z. Jelonek, Irreducible identity sets for polynomial automorphisms, Math. Z. 212 (1993), 601-617.
  6. [Jel3] Z. Jelonek, Affine smooth varieties with finite group of automorphisms, ibid., to appear.
  7. [Jel4] Z. Jelonek, The extension of regular and rational embeddings, Math. Ann. 277 (1987), 113-120.
  8. [Jel5] Z. Jelonek, Sets determining polynomial automorphisms of ℂ², Bull. Polish Acad. Sci. Math. 37 (1989), 247-250.
  9. [Kal] S. Kaliman, Polynomials on ℂ² with isomorphic generic fibers, Soviet Math. Dokl. 33 (1986), 600-603.
  10. [Kam] T. Kambayashi, Automorphism group of a polynomial ring and algebraic group action on an affine space, J. Algebra 60 (1979), 439-451.
  11. [Kul] W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wisk. 1 (1953), 33-41.
  12. [M-W] J. MacKay and S. Wang, An inversion formula for two polynomials in two variables, J. Pure Appl. Algebra 76 (1986), 245-257.
  13. [Sak] F. Sakai, Kodaira dimension of complements of divisors, in: Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, 1977, 239-257.
  14. [Suz1] M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace ℂ², J. Math. Soc. Japan 26 (1974), 241-257.
  15. [Suz2] M. Suzuki, Sur les opérations holomorphes du groupe additif complexe sur l'espace de deux variables complexes, Ann. Sci. Ecole Norm. Sup. 10 (1977), 517-546.
  16. [Zai] M. G. Zaĭdenberg, Isotrivial families of curves on affine surfaces and characterization of the affine plane, Math. USSR-Izv. 30 (1988), 503-532.
  17. [Z-L] M. G. Zaĭdenberg and V. Ya. Lin, An irreducible simply connected algebraic curve in ℂ² is equivalent to a quasihomogeneous curve, Soviet Math. Dokl. 28 (1983), 200-203.
Pages:
163-171
Main language of publication
English
Received
1993-10-21
Accepted
1994-02-10
Published
1994
Exact and natural sciences