ArticleOriginal scientific text

Title

Hyperbolically convex functions

Authors 1, 1

Affiliations

  1. Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025, U.S.A.

Abstract

We investigate univalent holomorphic functions f defined on the unit disk such that f() is a hyperbolically convex subset of ; there are a number of analogies with the classical theory of (euclidean) convex univalent functions. A subregion Ω of is called hyperbolically convex (relative to hyperbolic geometry on ) if for all points a,b in Ω the arc of the hyperbolic geodesic in connecting a and b (the arc of the circle joining a and b which is orthogonal to the unit circle) lies in Ω. We give several analytic characterizations of hyperbolically convex functions. These analytic results lead to a number of sharp consequences, including covering, growth and distortion theorems and the precise upper bound on |f''(0)| for normalized (f(0) = 0 and f'(0) > 0) hyperbolically convex functions. In addition, we find the radius of hyperbolic convexity for normalized univalent functions mapping into itself. Finally, we suggest an alternate definition of "hyperbolic linear invariance" for locally univalent functions f: → that parallels earlier definitions of euclidean and spherical linear invariance.

Keywords

hyperbolic convexity, distortion theorem, growth thoerem, linear invariance

Bibliography

  1. P. Duren, Univalent Functions, Grundlehren Math. Wiss. 259, Springer, New York, 1983.
  2. B. Flinn and B. Osgood, Hyperbolic curvature and conformal mapping, Bull. London Math. Soc. 18 (1986), 272-276.
  3. A. W. Goodman, Univalent Functions, Vols. I and II, Mariner, Tampa, 1983.
  4. M. Heins, On a class of conformal metrics, Nagoya Math. J. 21 (1962), 1-60.
  5. W. Ma, D. Mejia and D. Minda, Distortion theorems for hyperbolically and spherically k-convex functions, in: Proc. Internat. Conf. on New Trends in Geometric Function Theory and Applications, R. Parvatham and S. Ponnusamy (eds.), World Sci., Singapore, 1991, 46-54.
  6. W. Ma and D. Minda, Euclidean linear invariance and uniform local convexity, J. Austral. Math. Soc. Ser. A 52 (1992), 401-418.
  7. W. Ma and D. Minda, Hyperbolic linear invariance and hyperbolic k-convexity, J. Austral. Math. Soc. Ser. A to appear.
  8. W. Ma and D. Minda, Spherical linear invariance and uniform local spherical convexity, in: Current Topics in Geometric Function Theory, H. M. Srivastava and S. Owa (eds.), World Sci., Singapore, 1993, 148-170.
  9. D. Mejia and D. Minda, Hyperbolic geometry in hyperbolically k-convex regions, Rev. Colombiana Mat. 25 (1991), 123-142.
  10. D. Minda, A reflection principle for the hyperbolic metric and applications to geometric function theory, Complex Variables Theory Appl. 8 (1987), 129-144.
  11. D. Minda, Applications of hyperbolic convexity to euclidean and spherical convexity, J. Analyse Math. 49 (1987), 90-105.
  12. B. Osgood, Some properties of f''/f' and the Poincaré metric, Indiana Univ. Math. J. 31 (1982), 449-461.
  13. G. Pick, Über die konforme Abbildung eines Kreises auf eines schlichtes und zugleich beschränktes Gebiete, S.-B. Kaiserl. Akad. Wiss. Wien 126 (1917), 247-263.
  14. Ch. Pommerenke, Linear-invariante Familien analytischer Funktionen I, Math. Ann. 155 (1964), 108-154.
  15. E. Study, Konforme Abbildung einfachzusammenhängender Bereiche, Vorlesungen über ausgewählte Gegenstände der Geometrie, Heft 2, Teubner, Leipzig und Berlin, 1913.
  16. K.-J. Wirths, Coefficient bounds for convex functions of bounded type, Proc. Amer. Math. Soc. 103 (1988), 525-530.
Pages:
81-100
Main language of publication
English
Received
1993-07-29
Published
1994
Exact and natural sciences