ArticleOriginal scientific text

Title

Convex meromorphic mappings

Authors 1

Affiliations

  1. Department of Mathematical Sciences University of Delaware 501 Ewing Hall Newark, Delaware 19716 U.S.A.

Abstract

We study functions f(z) which are meromorphic and univalent in the unit disk with a simple pole at z = p, 0 < p < 1, and which map the unit disk onto a domain whose complement is either convex or is starlike with respect to a point w₀ ≠ 0.

Keywords

convex, starlike, meromorphic

Bibliography

  1. L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137-152.
  2. A. W. Goodman, Functions typically-real and meromorphic in the unit circle, Trans. Amer. Math. Soc. 8 (1950), 92-105.
  3. J. A. Jenkins, On a conjecture of Goodman concerning meromorphic univalent functions, Michigan Math. J. 9 (1962), 25-27.
  4. W. E. Kirwan and G. Schober, Extremal problems for meromorphic univalent functions, J. Analyse Math. 30 (1976), 330-348.
  5. Y. Komatu, Note on the theory of conformal representation by meromorphic functions I, II, Proc. Japan Acad. 21 (1945), 269-284.
  6. A. E. Livingston, The coefficients of multivalent close to convex functions, Proc. Amer. Math. Soc. 21 (1969), 545-552.
  7. J. Miller, Convex meromorphic mappings and related functions, Proc. Amer. Math. Soc. 25 (1970), 220-228.
  8. J. Miller, Starlike meromorphic functions, Proc. Amer. Math. Soc. 31 (1972), 446-452.
  9. J. Miller, Convex and starlike meromorphic functions, Proc. Amer. Math. Soc. 80 (1980), 607-613.
  10. J. Pfaltzgraff and B. Pinchuk, A variational method for classes of meromorphic functions, J. Analyse Math. 24 (1971), 101-150.
  11. W. C. Royster, Convex meromorphic functions, in Mathematical Essays Dedicated to A. J. MacIntyre, Ohio Univ. Press, Athens, Ohio, 1970, 331-339.
  12. G. Schober, Univalent Functions - Selected Topics, Lecture Notes in Math. 478, Springer, Berlin, 1975.
Pages:
275-291
Main language of publication
English
Received
1993-10-04
Published
1994
Exact and natural sciences