ArticleOriginal scientific textAnalytic cell decomposition of sets definable in the structure
Title
Analytic cell decomposition of sets definable in the structure
Authors 1
Affiliations
- Department of Mathematics, University of Dalat, 1 Phu Dong Thien Vuong, Dalat, Vietnam
Abstract
We prove that every set definable in the structure can be decomposed into finitely many connected analytic manifolds each of which is also definable in this structure.
Keywords
-sets, -sets, -sets, -sets, -sets
Bibliography
- Z. Denkowska, S. Łojasiewicz and J. Stasica, Certaines propriétés élémentaires des ensembles sous-analytiques, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 529-536.
- L. van den Dries, Tame topology and O-minimal structures, mimeographed notes, 1991.
- L. van den Dries and C. Miller, On the real exponential field with restricted analytic functions, Israel J. Math. 85 (1994), 19-56.
- A. G. Khovanskiĭ, On a class of systems of transcendental equations, Dokl. Akad. Nauk SSSR 255 (1980), 804-807 (in Russian).
- A. G. Khovanskiĭ, Fewnomials, Transl. Math. Monographs 88, Amer. Math. Soc., 1991.
- J. Knight, A. Pillay and C. Steinhorn, Definable sets in ordered structures. II, Trans. Amer. Math. Soc. 295 (1986), 593-605.
- T. L. Loi,
-regular points of sets definable in the structure , preprint, 1992. - S. Łojasiewicz, Ensembles Semi-Analytiques, mimeographed notes, I.H.E.S., Bures-sur-Yvette, 1965.
- J. C. Tougeron, Sur certaines algèbres de fonctions analytiques, Séminaire de géométrie algébrique réelle, Paris VII, 1986.
- J. C. Tougeron, Algèbres analytiques topologiquement noethériennes. Théorie de Khovanskiĭ, Ann. Inst. Fourier (Grenoble) 41 (4) (1991), 823-840.
- A. J. Wilkie, Some model completeness results for expansions of the ordered field of real numbers by Pfaffian functions, preprint, 1991.
- A. J. Wilkie, Model completeness results for expansions of the real field II: The exponential function, manuscript, 1991.