ArticleOriginal scientific text

Title

Analytic cell decomposition of sets definable in the structure exp

Authors 1

Affiliations

  1. Department of Mathematics, University of Dalat, 1 Phu Dong Thien Vuong, Dalat, Vietnam

Abstract

We prove that every set definable in the structure exp can be decomposed into finitely many connected analytic manifolds each of which is also definable in this structure.

Keywords

-sets, -sets, -sets, -sets, -sets

Bibliography

  1. Z. Denkowska, S. Łojasiewicz and J. Stasica, Certaines propriétés élémentaires des ensembles sous-analytiques, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 529-536.
  2. L. van den Dries, Tame topology and O-minimal structures, mimeographed notes, 1991.
  3. L. van den Dries and C. Miller, On the real exponential field with restricted analytic functions, Israel J. Math. 85 (1994), 19-56.
  4. A. G. Khovanskiĭ, On a class of systems of transcendental equations, Dokl. Akad. Nauk SSSR 255 (1980), 804-807 (in Russian).
  5. A. G. Khovanskiĭ, Fewnomials, Transl. Math. Monographs 88, Amer. Math. Soc., 1991.
  6. J. Knight, A. Pillay and C. Steinhorn, Definable sets in ordered structures. II, Trans. Amer. Math. Soc. 295 (1986), 593-605.
  7. T. L. Loi, Ck-regular points of sets definable in the structure exp, preprint, 1992.
  8. S. Łojasiewicz, Ensembles Semi-Analytiques, mimeographed notes, I.H.E.S., Bures-sur-Yvette, 1965.
  9. J. C. Tougeron, Sur certaines algèbres de fonctions analytiques, Séminaire de géométrie algébrique réelle, Paris VII, 1986.
  10. J. C. Tougeron, Algèbres analytiques topologiquement noethériennes. Théorie de Khovanskiĭ, Ann. Inst. Fourier (Grenoble) 41 (4) (1991), 823-840.
  11. A. J. Wilkie, Some model completeness results for expansions of the ordered field of real numbers by Pfaffian functions, preprint, 1991.
  12. A. J. Wilkie, Model completeness results for expansions of the real field II: The exponential function, manuscript, 1991.
Pages:
255-266
Main language of publication
English
Received
1993-06-03
Published
1994
Exact and natural sciences