Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Applications of singularity theory give rise to many questions concerning deformations of singularities. Unfortunately, satisfactory answers are known only for simple singularities and partially for unimodal ones. The aim of this paper is to give some insight into decompositions of multi-modal singularities with unimodal leading part. We investigate the $J_{k,0}$ singularities which have modality k - 1 but the quasihomogeneous part of their normal form only depends on one modulus.
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
117-131
Opis fizyczny
Daty
wydano
1994
otrzymano
1992-03-05
poprawiono
1993-02-15
Twórcy
autor
- University of Warsaw, Institute of Mathematics, Banacha 2, 02-097 Warszawa, Poland
Bibliografia
- [1] V. I. Arnold, S. M. Guseĭn-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Birkhäuser, 1985.
- [2] J. Damon, On the Pham example and the universal topological stratification of singularities, in: Singularities, Banach Center Publ. 20, PWN-Polish Scientific Publishers, Warszawa, 1988, 161-167.
- [3] J. Damon and A. Galligo, Universal topological stratification for the Pham example, preprint.
- [4] R. Hartshorne, Algebraic Geometry, Springer, 1977.
- [5] P. Jaworski, Distribution of critical values of miniversal deformations of parabolic singularities, Invent. Math. 86 (1986), 19-33.
- [6] E. Looijenga, Semi-universal deformation of a simple elliptic hypersurface singularity, I: Unimodularity, Topology 16 (1977), 257-262.
- [7] O. Lyashko, Decompositions of simple singularities of functions, Funktsional. Anal. i Prilozhen. 10 (2) (1976), 49-56 (in Russian).
- [8] F. Pham, Remarque sur l'equisingularité universelle, preprint, Univ. de Nice, 1970.
- [9] K. Wirtmüller, Universell topologische triviale Deformationen, thesis, University of Regensburg.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-apmv59z2p117bwm