ArticleOriginal scientific text

Title

Second order evolution equations with parameter

Authors 1, 1

Affiliations

  1. Institute of Mathematics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland

Abstract

We give some theorems on continuity and differentiability with respect to (h,t) of the solution of a second order evolution problem with parameter hΩm. Our main tool is the theory of strongly continuous cosine families of linear operators in Banach spaces.

Keywords

evolution problem, cosine family, evolution problem with parameter

Bibliography

  1. J. Bochenek, An abstract nonlinear second order differential equation, Ann. Polon. Math. 54 (1991), 155-166.
  2. H. O. Fattorini, Ordinary differential equations in linear topological spaces, I, J. Differential Equations 15 (1968), 72-105.
  3. T. Kato, Perturbation Theory for Linear Operators, Springer, New York, 1980.
  4. S. Krein, Linear Differential Equations in Banach Space, Amer. Math. Soc., 1972.
  5. M. Schechter, Differentiability of solutions of elliptic problems with respect to parameters, Boll. Un. Mat. Ital. A (5) 13 (1976), 601-608.
  6. C. C. Travis and G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungar. 32 (1978), 75-96.
  7. T. Winiarska, Evolution equation with parameter, Univ. Iagell. Acta Math. 28 (1987), 219-227.
  8. T. Winiarska, Differential Equations with Parameter, Monograph 68, T. Kościuszko Technical Univ. of Cracow, 1988.
  9. T. Winiarska, Parabolic equations with coefficients depending on t and parameters, Ann. Polon. Math. 51 (1990), 325-339.
Pages:
41-52
Main language of publication
English
Received
1992-12-15
Accepted
1993-02-22
Published
1994
Exact and natural sciences