ArticleOriginal scientific text
Title
Second order evolution equations with parameter
Authors 1, 1
Affiliations
- Institute of Mathematics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
Abstract
We give some theorems on continuity and differentiability with respect to (h,t) of the solution of a second order evolution problem with parameter . Our main tool is the theory of strongly continuous cosine families of linear operators in Banach spaces.
Keywords
evolution problem, cosine family, evolution problem with parameter
Bibliography
- J. Bochenek, An abstract nonlinear second order differential equation, Ann. Polon. Math. 54 (1991), 155-166.
- H. O. Fattorini, Ordinary differential equations in linear topological spaces, I, J. Differential Equations 15 (1968), 72-105.
- T. Kato, Perturbation Theory for Linear Operators, Springer, New York, 1980.
- S. Krein, Linear Differential Equations in Banach Space, Amer. Math. Soc., 1972.
- M. Schechter, Differentiability of solutions of elliptic problems with respect to parameters, Boll. Un. Mat. Ital. A (5) 13 (1976), 601-608.
- C. C. Travis and G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungar. 32 (1978), 75-96.
- T. Winiarska, Evolution equation with parameter, Univ. Iagell. Acta Math. 28 (1987), 219-227.
- T. Winiarska, Differential Equations with Parameter, Monograph 68, T. Kościuszko Technical Univ. of Cracow, 1988.
- T. Winiarska, Parabolic equations with coefficients depending on
and parameters, Ann. Polon. Math. 51 (1990), 325-339.