Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Recently, A. W. Goodman introduced the class UCV of normalized uniformly convex functions. We present some sharp coefficient bounds for functions f(z) = z + a₂z² + a₃z³ + ... ∈ UCV and their inverses $f^{-1}(w) = w + d₂w² + d₃w³ + ...$. The series expansion for $f^{-1}(w)$ converges when $|w| < ϱ_f$, where $0 < ϱ_f$ depends on f. The sharp bounds on $|a_n|$ and all extremal functions were known for n = 2 and 3; the extremal functions consist of a certain function k ∈ UCV and its rotations. We obtain the sharp bounds on $|a_n|$ and all extremal functions for n = 4, 5, and 6. The same function k and its rotations remain the only extremals. It is known that k and its rotations cannot provide the sharp bound on $|a_n|$ for n sufficiently large. We also find the sharp estimate on the functional |μa²₂ - a₃| for -∞ < μ < ∞. We give sharp bounds on $|d_n|$ for n = 2, 3 and 4. For $n = 2, k^{-1}$ and its rotations are the only extremals. There are different extremal functions for both n = 3 and n = 4. Finally, we show that k and its rotations provide the sharp upper bound on |f''(z)| over the class UCV.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
275-285
Opis fizyczny
Daty
wydano
1993
otrzymano
1992-08-28
poprawiono
1993-02-01
Twórcy
autor
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025, U.S.A.
autor
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025, U.S.A.
Bibliografia
- [A] L. V. Ahlfors, Complex Analysis, 3rd ed., McGraw-Hill, New York, 1979.
- [G] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), 87-92.
- [L] A. E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc. 21 (1969), 545-552.
- [LZ] R. J. Libera and E. J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), 225-230.
- [MM] W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57 (1992), 165-175.
- [P] Ch. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.
- [Rø₁] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), 189-196.
- [Rø₂] F. Rønning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 117-122.
- [T] S. Y. Trimble, A coefficient inequality for convex univalent functions, Proc. Amer. Math. Soc. 48 (1975), 266-267.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-apmv58z3p275bwm