ArticleOriginal scientific text

Title

On functions satisfying more than one equation of Schiffer type

Authors 1, 1

Affiliations

  1. Institute of Mathematics, Silesian Technical University, Zwycięstwa 42, 44-100 Gliwice, Poland

Abstract

The paper concerns properties of holomorphic functions satisfying more than one equation of Schiffer type (Dn-equation). Such equations are satisfied, in particular, by functions that are extremal (in various classes of univalent functions) with respect to functionals depending on a finite number of coefficients.

Keywords

univalent function, coefficient region, Schiffer type equation

Bibliography

  1. A. K. Bahtin, Some properties of functions of class S, Ukrain. Mat. Zh. 33 (1981), 154-159 (in Russian); English transl.: Ukrainian Math. J. 33 (1981), 122-126.
  2. Y. Kubota, On extremal problems which correspond to algebraic univalent functions, Kodai Math. Sem. Rep. 25 (1973), 412-428.
  3. Z. J. Jakubowski and W. Majchrzak, On functions realizing the maximum of two functionals at a time, Serdica 10 (1984), 337-343.
  4. A. Rost and J. Śladkowska, Sur les fonctions de Bieberbach-Eilenberg satisfaisant à plus qu'une équation de type de Schiffer, Demonstratio Math., to appear.
  5. H. L. Royden, The coefficient problem for bounded schlicht functions, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 637-662.
  6. A. C. Schaeffer and D. C. Spencer, Coefficient Regions for Schlicht Functions, Amer. Math. Soc., 1950.
  7. J. Śladkowska, Sur les fonctions univalentes, bornées, satisfaisant deux au moins Dn-équations, Demonstratio Math. 11 (1978), 1-28.
  8. V. V. Starkov, Bounded univalent functions realizing the extrema of two coefficients functionals at a time, in: Proc. XIth Instructional Conf. on the Theory of Extremal Problems, Łódź 1990, 31-33.
  9. K. Tochowicz, Functions which satisfy the differential equation of Schiffer type, Zeszyty Nauk. Politechn. Rzeszowskiej Mat. Fiz. 38 (6) (1987), 103-113.
Pages:
237-252
Main language of publication
English
Received
1992-01-02
Accepted
1992-07-07
Published
1993
Exact and natural sciences