ArticleOriginal scientific text

Title

Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions

Authors 1, 2, 2

Affiliations

  1. Institute of Systems Science, Academia Sinica, Beijing 100080, P.R. China
  2. Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela, Spain

Abstract

The purpose of this paper is to study the periodic boundary value problem -u''(t) = f(t,u(t),u'(t)), u(0) = u(2π), u'(0) = u'(2π) when f satisfies the Carathéodory conditions. We show that a generalized upper and lower solution method is still valid, and develop a monotone iterative technique for finding minimal and maximal solutions.

Keywords

upper and lower solutions, monotone iterative technique, Carathéodory function

Bibliography

  1. A. Adje, Sur et sous-solutions généralisées et problèmes aux limites du second ordre, Bull. Soc. Math. Belgique Sér. B 42 (1990), 347-368.
  2. J. Bebernes, A simple alternative problem for finding periodic solutions of second order ordinary differential systems, Proc. Amer. Math. Soc. 42 (1974), 121-127.
  3. J. Bebernes and R. Fraker, A priori bounds for boundary sets, ibid. 29 (1971), 313-318.
  4. J. Bebernes and W. Kelley, Some boundary value problems for generalized differential equations, SIAM J. Appl. Math. 25 (1973), 16-23.
  5. J. Bebernes and M. Martelli, On the structure of the solution set for periodic boundary value problems, Nonlinear Anal. 4 (1980), 821-830.
  6. J. Bebernes and K. Schmitt, Periodic boundary value problems for systems of second order differential equations, J. Differential Equations 13 (1973), 32-47.
  7. A. Cabada and J. J. Nieto, A generalization of the monotone iterative technique for nonlinear second-order periodic boundary value problems, J. Math. Anal. Appl. 151 (1990), 181-189.
  8. A. Cabada and J. J. Nieto, Extremal solutions of second-order nonlinear periodic boundary value problems, Appl. Math. Comput. 40 (1990), 135-145.
  9. G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, New York, 1985.
  10. J. J. Nieto, Nonlinear second-order periodic boundary value problems with Carathé- odory functions, Applicable Anal. 34 (1989), 111-128.
  11. D. R. Smart, Fixed Points Theorems, Cambridge University Press, Cambridge, 1974.
  12. M. X. Wang, Monotone method for nonlinear periodic boundary value problems, J. Beijing Inst. Technol. 9 (1989), 74-81 (in Chinese).
Pages:
221-235
Main language of publication
English
Received
1991-10-14
Accepted
1992-02-10
Published
1993
Exact and natural sciences