ArticleOriginal scientific textOn the spectrum of A(Ω) and
Title
On the spectrum of A(Ω) and
Authors 1
Affiliations
- Department of Mathematics, Umeå University, S-901 87 Umeå, Sweden
Abstract
We study some properties of the maximal ideal space of the bounded holomorphic functions in several variables. Two examples of bounded balanced domains are introduced, both having non-trivial maximal ideals.
Keywords
bounded analytic function, spectrum, Gleason problem, balanced domain
Bibliography
- U. Cegrell, Representing measures in the spectrum of
, in: Complex Analysis, Proc. Internat. Workshop, Wuppertal 1990, K. Diederich (ed.), Aspects of Math. E17, Vieweg, 1991, 77-80. - J. E. Fornæss and N. Øvrelid, Finitely generated ideals in A(Ω), Ann. Inst. Fourier (Grenoble) 33 (2) (1983), 77-85.
- T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
- T. W. Gamelin, Uniform Algebras and Jensen Measures, Cambridge Univ. Press, 1978.
- M. Hakim et N. Sibony, Spectre de A(Ω̅ ) pour les domaines bornés faiblement pseudoconvexes réguliers, J. Funct. Anal. 37 (1980), 127-135.
- J. J. Kohn, Global regularity for ∂̅ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273-292.
- A. Noell, The Gleason problem for domains of finite type, Complex Variables 4 (1985), 233-241.
- M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer, 1986.
- N. Sibony, Prolongement analytique des fonctions holomorphes bornées, in: Sém. Pierre Lelong 1972-73, Lecture Notes in Math. 410, Springer, 1974, 44-66.
- J. Siciak, Balanced domains of holomorphy of type
, Mat. Vesnik 37 (1985), 134-144. - N. Øvrelid, Generators of the maximal ideals of A(D̅), Pacific J. Math. 39 (1971), 219-223.