ArticleOriginal scientific text
Title
Asymptotic properties of Markov operators defined by Volterra type integrals
Authors 1, 1
Affiliations
- Institute of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland
Abstract
New sufficient conditions for asymptotic stability of Markov operators are given. These criteria are applied to a class of Volterra type integral operators with advanced argument.
Keywords
Markov operator, integral Markov operator, stationary density, asymptotic stability, sweeping
Bibliography
- S. R. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand Math. Stud. 21, Van Nostrand, 1969.
- H. Gacki and A. Lasota, Markov operators defined by Volterra type integrals with advanced argument, Ann. Polon. Math. 51 (1990), 155-166.
- T. Komorowski and J. Tyrcha, Asymptotic properties of some Markov operators, Bull. Polish Acad. Sci. Math. 37 (1989), 221-228.
- U. Krengel, Ergodic Theorems, de Gruyter, 1985.
- A. Lasota and M. C. Mackey, Globally asymptotic properties of proliferating cell populations, J. Math. Biol. 19 (1984), 43-62.
- A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge University Press, 1985.
- A. Lasota, M. C. Mackey and J. Tyrcha, The statistical dynamics of recurrent biological events, J. Math. Biol. 30 (1992), 775-800.
- J. Malczak, An application of Markov operators in differential and integral equations, Rend. Sem. Mat. Univ. Padova, in press.
- J. Socała, On the existence of invariant densities for Markov operators, Ann. Polon. Math. 48 (1988), 51-56.
- J. Tyrcha, Asymptotic stability in a generalized probabilistic/deterministic model of the cell cycle, J. Math. Biol. 26 (1988), 465-475.
- J. J. Tyson and K. B. Hannsgen, Global asymptotic stability of the size distribution in probabilistic model of the cell cycle, J. Math. Biol. 22 (1985), 61-68.
- J. J. Tyson and K. B. Hannsgen, Cell growth and division: A deterministic/probabilistic model of the cell cycle, J. Math. Biol. 23 (1986), 231-246.