ArticleOriginal scientific text

Title

On some generalized invariant means and their application to the stability of the Hyers-Ulam type

Authors 1

Affiliations

  1. Institute of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland

Abstract

We present some extension of the concept of an invariant mean to a space of vector-valued mappings defined on a semigroup. Next, we apply it to the study of the stability of some functional equation.

Keywords

Hyers-Ulam stability theorem, invariant mean, binary intersection property

Bibliography

  1. M. A. Albert and J. A. Baker, Functions with bounded n-th differences, Ann. Polon. Math. 43 (1983), 93-103.
  2. K. Baron, Functions with differences in subspaces, in: Proceedings of the 18th International Symposium on Functional Equations, University of Waterloo, Faculty of Mathematics, Waterloo, Ontario, Canada, 1980.
  3. M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544.
  4. M. M. Day, Fixed point theorem for compact convex sets, ibid. 5 (1961), 585-590.
  5. M. M. Day, Normed Linear Spaces, Springer, Berlin 1973.
  6. J. Dixmier, Les moyennes invariantes dans les semigroupes et leurs applications, Acta Sci. Math. (Szeged) 12 (1950), 213-227.
  7. G. L. Forti and J. Schwaiger, Stability of homomorphisms and completeness, C. R. Math. Rep. Acad. Sci. Canada 11 (6) (1989), 215-220.
  8. Z. Gajda, A solution to a problem of J. Schwaiger, Aequationes Math. 32 (1987), 38-44.
  9. Z. Gajda, Invariant means and representations of semigroups in the theory of functional equations, Prace Naukowe Uniwersytetu Śląskiego 1273, Katowice 1992.
  10. Z. Gajda, W. Smajdor and A. Smajdor, A theorem of the Hahn-Banach type and its applications, Ann. Polon. Math. 57 (1992), 243-252.
  11. F. P. Greenleaf, Invariant Means on Topological Groups and Their Applications, Van Nostrand Math. Stud. 16, New York 1969.
  12. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Springer, Berlin 1963.
  13. D. H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
  14. M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Polish Scientific Publishers (PWN) and Silesian University Press, Warszawa-Kraków-Katowice 1985.
  15. Z. Moszner, Sur la stabilité de l'équation d'homomorphisme, Aequationes Math. 29 (1985), 290-306.
  16. L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc. 68 (1950), 28-46.
  17. J. von Neumann, Zur allgemeinen Theorie der Masses, Fund. Math. 13 (1929), 73-116.
  18. K. Nikodem, On Jensen's functional equation for set-valued functions, Rad. Mat. 3 (1987), 23-33.
  19. J. Rätz, On approximately additive mappings, in: General Inequalities 2, Internat. Ser. Numer. Math. 47, Birkhäuser, Basel 1980, 233-251.
  20. L. Székelyhidi, Remark 17, Report of Meeting, Aequationes Math. 29 (1985), 95-96.
  21. L. Székelyhidi, Note on Hyers's theorem, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 127-129.
  22. S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York 1960.
Pages:
147-159
Main language of publication
English
Received
1992-06-17
Accepted
1993-01-27
Published
1993
Exact and natural sciences