ArticleOriginal scientific text
Title
Existence of solution of the nonlinear Dirichlet problem for differential-functional equations of elliptic type
Authors 1
Affiliations
- Institute of Mathematics, University of Mining And Metallurgy, Al. Mickiewicza 30, 30-059 Kraków, Poland
Abstract
Consider a nonlinear differential-functional equation
(1) Au + f(x,u(x),u) = 0
where
,
, G is a bounded domain with (0 < α < 1) boundary, the operator A is strongly uniformly elliptic in G and u is a real function.
For the equation (1) we consider the Dirichlet problem with the boundary condition
(2) u(x) = h(x) for x∈ ∂G.
We use Chaplygin's method [5] to prove that problem (1), (2) has at least one regular solution in a suitable class of functions.
Using the method of upper and lower functions, coupled with the monotone iterative technique, H. Amman [3], D. H. Sattinger [13] (see also O. Diekmann and N. M. Temme [6], G. S. Ladde, V. Lakshmikantham, A. S. Vatsala [8], J. Smoller [15]) and I. P. Mysovskikh [11] obtained similar results for nonlinear differential equations of elliptic type.
A special case of (1) is the integro-differential equation
.
Interesting results about existence and uniqueness of solutions for this equation were obtained by H. Ugowski [17].
Keywords
nonlinear differential-functional equations of elliptic type, monotone iterative technique, Chaplygin's method, Dirichlet problem
Bibliography
- R. A. Adams, Sobolev Spaces, Academic Press, New York 1975.
- S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math. 12 (1959), 623-727.
- H. Amman, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971), 125-146.
- J. Appell and P. Zabreĭko, Nonlinear Superposition Operators, Cambridge University Press, Cambridge 1990.
- S. Brzychczy, Chaplygin's method for a system of nonlinear parabolic differential-functional equations, Differentsial'nye Uravneniya 22 (1986), 705-708 (in Russian).
- O. Diekmann and N. M. Temme, Nonlinear Diffusion Problems, MC Syllabus 28, Mathematisch Centrum, Amsterdam 1982.
- M. A. Krasnosel'skiĭ, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford 1963.
- G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Boston 1985.
- O. A. Ladyzhenskaya and N. N. Ural'ceva, Linear and Quasilinear Elliptic Equations, Academic Press, New York 1968.
- M. Malec, Unicité des solutions d'un système non linéaire d'équations elliptiques contenant des fonctionnelles, Boll. Un. Mat. Ital. (6) 2-A (1983), 321-329.
- I. P. Mysovskikh, Application of Chaplygin's method to the Dirichlet problem for elliptic equations of a special type, Dokl. Akad. Nauk SSSR 99 (1) (1954), 13-15 (in Russian).
- M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer, New York 1984.
- D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972), 979-1000.
- J. Schauder, Über lineare elliptische Differentialgleichungen zweiter Ordnung, Math. Z. 38 (1934), 257-282.
- J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, New York 1983.
- N. M. Temme (ed.), Nonlinear Analysis, Vol. II, MC Syllabus 26.2, Mathematisch Centrum, Amsterdam 1976.
- H. Ugowski, On integro-differential equations of parabolic and elliptic type, Ann. Polon. Math. 22 (1970), 255-275.
- M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators, Holden-Day, San Francisco 1964.
- J. Wloka, Funktionalanalysis und Anwendungen, de Gruyter, Berlin 1971.
- J. Wloka, Grundräume und verallgemeinerte Funktionen, Lecture Notes in Math. 82, Springer, Berlin 1969.