ArticleOriginal scientific text

Title

Existence of solution of the nonlinear Dirichlet problem for differential-functional equations of elliptic type

Authors 1

Affiliations

  1. Institute of Mathematics, University of Mining And Metallurgy, Al. Mickiewicza 30, 30-059 Kraków, Poland

Abstract

Consider a nonlinear differential-functional equation (1) Au + f(x,u(x),u) = 0 where Au:=i,j=1maij(x)²uxixj, x=(x1,...,xm)Gm, G is a bounded domain with C2+α (0 < α < 1) boundary, the operator A is strongly uniformly elliptic in G and u is a real Lp(G̅) function. For the equation (1) we consider the Dirichlet problem with the boundary condition (2) u(x) = h(x) for x∈ ∂G. We use Chaplygin's method [5] to prove that problem (1), (2) has at least one regular solution in a suitable class of functions. Using the method of upper and lower functions, coupled with the monotone iterative technique, H. Amman [3], D. H. Sattinger [13] (see also O. Diekmann and N. M. Temme [6], G. S. Ladde, V. Lakshmikantham, A. S. Vatsala [8], J. Smoller [15]) and I. P. Mysovskikh [11] obtained similar results for nonlinear differential equations of elliptic type. A special case of (1) is the integro-differential equation Au+f(x,u(x),Gu(x)dx)=0. Interesting results about existence and uniqueness of solutions for this equation were obtained by H. Ugowski [17].

Keywords

nonlinear differential-functional equations of elliptic type, monotone iterative technique, Chaplygin's method, Dirichlet problem

Bibliography

  1. R. A. Adams, Sobolev Spaces, Academic Press, New York 1975.
  2. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math. 12 (1959), 623-727.
  3. H. Amman, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971), 125-146.
  4. J. Appell and P. Zabreĭko, Nonlinear Superposition Operators, Cambridge University Press, Cambridge 1990.
  5. S. Brzychczy, Chaplygin's method for a system of nonlinear parabolic differential-functional equations, Differentsial'nye Uravneniya 22 (1986), 705-708 (in Russian).
  6. O. Diekmann and N. M. Temme, Nonlinear Diffusion Problems, MC Syllabus 28, Mathematisch Centrum, Amsterdam 1982.
  7. M. A. Krasnosel'skiĭ, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford 1963.
  8. G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Boston 1985.
  9. O. A. Ladyzhenskaya and N. N. Ural'ceva, Linear and Quasilinear Elliptic Equations, Academic Press, New York 1968.
  10. M. Malec, Unicité des solutions d'un système non linéaire d'équations elliptiques contenant des fonctionnelles, Boll. Un. Mat. Ital. (6) 2-A (1983), 321-329.
  11. I. P. Mysovskikh, Application of Chaplygin's method to the Dirichlet problem for elliptic equations of a special type, Dokl. Akad. Nauk SSSR 99 (1) (1954), 13-15 (in Russian).
  12. M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer, New York 1984.
  13. D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972), 979-1000.
  14. J. Schauder, Über lineare elliptische Differentialgleichungen zweiter Ordnung, Math. Z. 38 (1934), 257-282.
  15. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, New York 1983.
  16. N. M. Temme (ed.), Nonlinear Analysis, Vol. II, MC Syllabus 26.2, Mathematisch Centrum, Amsterdam 1976.
  17. H. Ugowski, On integro-differential equations of parabolic and elliptic type, Ann. Polon. Math. 22 (1970), 255-275.
  18. M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators, Holden-Day, San Francisco 1964.
  19. J. Wloka, Funktionalanalysis und Anwendungen, de Gruyter, Berlin 1971.
  20. J. Wloka, Grundräume und verallgemeinerte Funktionen, Lecture Notes in Math. 82, Springer, Berlin 1969.
Pages:
139-146
Main language of publication
English
Received
1992-05-12
Accepted
1992-09-08
Published
1993
Exact and natural sciences