PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1992 | 57 | 3 | 269-281
Tytuł artykułu

A generalization of the saddle point method with applications

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We show that one can drop an important hypothesis of the saddle point theorem without affecting the result. We then show how this leads to stronger results in applications.
Twórcy
  • Department of Mathematics, University of California, Irvine, California 92717, U.S.A.
Bibliografia
  • [AH] H. Amann and P. Hess, A multiplicity result for a class of elliptic boundary value problems, Proc. Roy. Soc. Edinburgh 84A (1979), 145-151.
  • [AP] A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. 93 (1973), 231-247.
  • [AR] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
  • [BBF] P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with 'strong' resonance at infinity, Nonlinear Anal. 7 (1983), 981-1012.
  • [BF] H. Berestycki and D. G. de Figueiredo, Double resonance in semilinear elliptic problems, Comm. Partial Differential Equations 6 (1981), 91-120.
  • [BP] M. Berger and E. Podolak, On the solution of a nonlinear Dirichlet problem, Indiana Univ. Math. J. 24 (1975), 837-846.
  • [BS] M. S. Berger and M. Schechter, On the solvability of semilinear gradient operator equations, Adv. in Math. 25 (1977), 97-132.
  • [BN] H. Brezis and L. Nirenberg, Remarks on finding critical points, to appear.
  • [Cac1] N. P. Cac, On an elliptic boundary value problem at double resonance, J. Math. Anal. Appl. 132 (1988), 473-483.
  • [Cac2] N. P. Cac, On the number of solutions of an elliptic boundary value problem with jumping nonlinearity, Nonlinear Anal. 13 (1989), 341-351.
  • [Cac3] N. P. Cac, On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity crosses a multiple eigenvalue, J. Differential Equations 80 (1989), 379-404.
  • [Cac4] N. P. Cac, On a boundary value problem with non-smooth jumping non-linearity, to appear.
  • [Cas] A. Castro, Hammerstein integral equations with indefinite kernel, Internat. J. Math. Math. Sci. 1 (1978), 187-201.
  • [D] E. N. Dancer, Multiple solutions of asymptotically homogeneous problems, to appear.
  • [DF] D. G. de Figueiredo, Positive solutions of some classes of semilinear elliptic problems, in: Proc. Sympos. Pure Math. 45, Amer. Math. Soc., 1986, 371-379.
  • [DFG] D. G. de Figueiredo et J. P. Gossez, Conditions de non-résonance pour certains problèmes elliptiques semi-linéaires, C. R. Acad. Sci. Paris 302 (1986), 543-545.
  • [DFLN] D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence results for positive solutions of semilinear elliptic equations, J. Math. Pures Appl. 61 (1982), 41-63.
  • [GK] T. Gallouet et O. Kavian, Résultats d'existence et de non-existence pour certains problèmes demi linéaires d l'infini, Ann. Fac. Sci. Toulouse Math. 3 (1981), 201-246.
  • [H] P. Hess, On a nonlinear elliptic boundary value problem of the Ambrosetti-Prodi type, Boll. Un. Mat. Ital. 17A (1980), 189-192.
  • [KW] J. L. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597.
  • [LL] E. A. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609-623.
  • [La] A. C. Lazer, Introduction to multiplicity theory for boundary value problems with asymmetric nonlinearities, in: Partial Differential Equations, F. Cordoso et al. (eds.), Lecture Notes in Math. 1324, Springer, 1988, 137-165.
  • [LM1] A. C. Lazer and P. J. McKenna, Multiplicity results for a class of semilinear elliptic and parabolic boundary value problems, J. Math. Anal. Appl. 107 (1985), 371-395.
  • [LM2] A. C. Lazer and P. J. McKenna, Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues, I, II, Comm. Partial Differential Equations 10 (1985), 107-150; 11 (1986), 1653-1676.
  • [LM3] A. C. Lazer and P. J. McKenna, Multiplicity of solutions of nonlinear boundary value problems with nonlinearities crossing several hiqher eigenvalues, J. Reine Angew. Math. 368 (1986), 184-200.
  • [Lin] S. S. Lin, Some results for semilinear differential equations at resonance, J. Math. Anal. Appl. 93 (1983), 574-592.
  • [LM] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems I, Springer, Berlin 1972.
  • [Lio] P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), 441-457.
  • [MW] J. Mawhin and M. Willem, Critical points of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), 431-453.
  • [N1] L. Nirenberg, Variational and topological methods in nonlinear problems, Bull. Amer. Math. Soc. 4 (1981), 267-302.
  • [N2] L. Nirenberg, Variational methods in nonlinear problems, in: Lecture Notes in Math. 1365, Springer, 1988, 100-119.
  • [P] E. Podolak, On the range of operator equations with an asymptotically nonlinear term, Indiana Univ. Math. J. 25 (1976), 1127-1137.
  • [Ra1] P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, in: Eigenvalues of Nonlinear Problems, G. Prodi (ed.), C.I.M.E., Ed. Cremonese, Roma 1975, 141-195.
  • [Ra2] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math. 65, Amer. Math. Soc., 1986.
  • [Ru] B. Ruf, On nonlinear elliptic boundary value problems with jumping nonlinearities, Ann. Mat. Pura Appl. 128 (1980), 133-151.
  • [Sc1] M. Schechter, Nonlinear elliptic boundary value problems at strong resonance, Amer. J. Math. 112 (1990), 439-460.
  • [Sc2] M. Schechter, Solution of nonlinear problems at resonance, Indiana Univ. Math. J. 39 (1990), 1061-1080.
  • [Sc3] M. Schechter, A bounded mountain pass lemma without the (PS) condition and applications, Trans. Amer. Math. Soc. 331 (1992), 681-703.
  • [Sc4] M. Schechter, Nonlinear elliptic boundary value problems at resonance, Nonlinear Anal. 14 (1990), 889-903.
  • [Sc5] M. Schechter, A variation of the mountain pass lemma and applications, J. London Math. Soc. (2) 44 (1991), 491-502.
  • [Sc6] M. Schechter, The Hampwile theorem for nonlinear eigenvalues, Duke Math. J. 59 (1989), 325-335.
  • [So] S. Solimini, Some remarks on the number of solutions of some nonlinear elliptic problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 143-156.
  • [Ta] E. Tarafdar, An approach to nonlinear elliptic boundary value problems, J. Austral. Math. Soc. 34 (1983), 316-335.
  • [Th1] K. Thews, A reduction method for some nonlinear Dirichlet problems, Nonlinear Anal. 3 (1979), 794-813.
  • [Th2] K. Thews, Nontrivial solutions of elliptic equations at resonance, Proc. Roy Soc. Edinburgh 85A (1980), 119-129.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-apmv57z3p269bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.