ArticleOriginal scientific text

Title

On the generalized Avez method

Authors 1

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Abstract

A generalization of the Avez method of construction of an invariant measure is presented.

Keywords

Avez measure, invariant measure

Bibliography

  1. A. Avez, Propriétés ergodiques des endomorphismes dilatants des variétes compacts, C. R. Acad. Sci. Paris Sér. A 266 (1968), 610-612.
  2. S. Banach, Théorie des opérations linéaires, Warszawa 1932.
  3. A. L. Dawidowicz, On the existence of an invariant measure for the dynamical system generated by partial differential equation, Ann. Polon. Math. 41 (1983), 129-137.
  4. A. L. Dawidowicz, Invariant measures supported on compact sets, Univ. Iagell. Acta Math. 25 (1985), 277-283.
  5. A. L. Dawidowicz, On the positivity of an invariant measure on open non-empty sets, Ann. Polon. Math. 50 (1989), 185-190.
  6. A. L. Dawidowicz, On the lifting of invariant measure, Ann. Polon. Math. 51 (1990), 137-139.
  7. U. Krengel, Ergodic Theorems, W. de Gruyter, Berlin 1985.
  8. A. Lasota, Invariant measure and a linear model of turbulence, Rend. Sem. Mat. Univ. Padova 61 (1979), 39-48.
  9. A. Lasota and G. Pianigiani, Invariant measures on topological spaces, Boll. Un. Mat. Ital. (5) 15-B (1977), 592-603.
  10. F. Schweiger, Some remarks on ergodicity and invariant measures, Michigan Math. J. 22 (1975), 181-187.
  11. F. Schweiger, tan x is ergodic, Proc. Amer. Math. Soc. 71 (1978), 54-56.
Pages:
209-218
Main language of publication
English
Received
1989-08-10
Accepted
1991-02-15
Published
1992
Exact and natural sciences