Download PDF - On the generalized Avez method
ArticleOriginal scientific text
Title
On the generalized Avez method
Authors 1
Affiliations
- Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
Abstract
A generalization of the Avez method of construction of an invariant measure is presented.
Keywords
Avez measure, invariant measure
Bibliography
- A. Avez, Propriétés ergodiques des endomorphismes dilatants des variétes compacts, C. R. Acad. Sci. Paris Sér. A 266 (1968), 610-612.
- S. Banach, Théorie des opérations linéaires, Warszawa 1932.
- A. L. Dawidowicz, On the existence of an invariant measure for the dynamical system generated by partial differential equation, Ann. Polon. Math. 41 (1983), 129-137.
- A. L. Dawidowicz, Invariant measures supported on compact sets, Univ. Iagell. Acta Math. 25 (1985), 277-283.
- A. L. Dawidowicz, On the positivity of an invariant measure on open non-empty sets, Ann. Polon. Math. 50 (1989), 185-190.
- A. L. Dawidowicz, On the lifting of invariant measure, Ann. Polon. Math. 51 (1990), 137-139.
- U. Krengel, Ergodic Theorems, W. de Gruyter, Berlin 1985.
- A. Lasota, Invariant measure and a linear model of turbulence, Rend. Sem. Mat. Univ. Padova 61 (1979), 39-48.
- A. Lasota and G. Pianigiani, Invariant measures on topological spaces, Boll. Un. Mat. Ital. (5) 15-B (1977), 592-603.
- F. Schweiger, Some remarks on ergodicity and invariant measures, Michigan Math. J. 22 (1975), 181-187.
- F. Schweiger, tan x is ergodic, Proc. Amer. Math. Soc. 71 (1978), 54-56.