ArticleOriginal scientific text
Title
On Cauchy-Riemann submanifolds whose local geodesic symmetries preserve the fundamental form
Authors 1, 2
Affiliations
- Department of Mathematics, State University of New York at Stony Brook, Stony Brook, New York 11794-3651, U.S.A.
- Dipartimento di Matematica, Università Degli Studi di Bari, 70125 Bari, Italy
Abstract
We classify generic Cauchy-Riemann submanifolds (of a Kaehlerian manifold) whose fundamental form is preserved by any local geodesic symmetry.
Keywords
Cauchy-Riemann submanifolds
Bibliography
- B. Y. Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine Agnew. Math. 325 (1981), 28-67.
- S. Dragomir, Cauchy-Riemann submanifolds of locally conformal Kaehler manifolds, I, II, Geom. Dedicata 28 (1988), 181-197; Atti Sem. Mat. Fis. Univ. Modena 37 (1989), 1-11.
- S. Dragomir, On submanifolds of Hopf manifolds, Israel J. Math. (2) 61 (1988), 199-210.
- A. Gray, The volume of a small geodesic ball in a Riemannian manifold, Michigan Math. J. 20 (1973), 329-344.
- K. Sekigawa and L. Vanhecke, Symplectic geodesic symmetries on Kaehler manifolds, Quart. J. Math. Oxford Ser. (2) 37 (1986), 95-103.
- I. Vaisman, Locally conformal Kähler manifolds with parallel Lee form, Rend. Mat. 12 (1979), 263-284.
- K. Yano, On a structure defined by a tensor field of type (1,1) satisfying f³+f=0, Tensor (N.S.) 14 (1963), 99-109.
- K. Yano and M. Kon, Generic submanifolds, Ann. Mat. Pura Appl. 123 (1980), 59-92.
- K. Yano and M. Kon, Cr Submanifolds of Kaehlerian and Sasakian Manifolds, Progr. Math. 30, Birkhäuser, Boston 1983.