ArticleOriginal scientific text
Title
p-Envelopes of non-locally convex F-spaces
Authors 1
Affiliations
- Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas 72701, U.S.A.
Abstract
The p-envelope of an F-space is the p-convex analogue of the Fréchet envelope. We show that if an F-space is locally bounded (i.e., a quasi-Banach space) with separating dual, then the p-envelope coincides with the Banach envelope only if the space is already locally convex. By contrast, we give examples of F-spaces with are not locally bounded nor locally convex for which the p-envelope and the Fréchet envelope are the same.
Keywords
p-envelope, non-locally convex F-space, multiplier
Bibliography
- A. B. Aleksandrov, Essays on non-locally convex Hardy classes, in: Complex Analysis and Spectral Theory, Lecture Notes in Math. 864, Springer, Berlin 1981, 1-89.
- R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in
, Astérisque 77 (1980), 11-66. - P. L. Duren, Theory of
Spaces, Academic Press, New York 1970. - P. L. Duren, B. W. Romberg and A. L. Shields, Linear functionals on
spaces with 0 < p < 1, J. Reine Angew. Math. 238 (1969), 32-60. - C. M. Eoff, Fréchet envelopes of certain algebras of analytic functions, Michigan Math. J. 35 (1988), 413-426.
- N. J. Kalton, Analytic functions in non-locally convex spaces and applications, Studia Math. 83 (1986), 275-303.
- N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space Sampler, London Math. Soc. Lecture Note Ser. 89, Cambridge Univ. Press, 1984.
- J. E. McCarthy, Topologies on the Smirnov class, to appear.
- N. Mochizuki, Algebras of holomorphic functions between
and , Proc. Amer. Math. Soc. 105 (1989), 898-902. - M. Nawrocki, Linear functionals on the Smirnov class of the unit ball in
, Ann. Acad. Sci. Fenn. AI 14 (1989), 369-379. - M. Nawrocki, The Fréchet envelopes of vector-valued Smirnov classes, Studia Math. 94 (1989), 163-177.
- J. W. Roberts and M. Stoll, Prime and principal ideals in the algebra N⁺, Arch. Math. (Basel) 27 (1976), 387-393; Correction, ibid. 30 (1978), 672.
- J. H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187-202.
- J. H. Shapiro, Remarks on F-spaces of analytic functions, in: Banach Spaces of Analytic Functions, Lecture Notes in Math. 604, Springer, Berlin 1977, 107-124.
- M. Stoll, Mean growth and Taylor coefficients of some topological algebras of analytic functions, Ann. Polon. Math. 35 (1977), 139-158.
- N. Yanagihara, Multipliers and linear functionals for the class N⁺, Trans. Amer. Math. Soc. 180 (1973), 449-461.
- N. Yanagihara, The containing Fréchet space for the class N⁺, Duke Math. J. 40 (1973), 93-103.
- A. I. Zayed, Topological vector spaces of analytic functions, Complex Variables 2 (1983), 27-50.