ArticleOriginal scientific text

Title

p-Envelopes of non-locally convex F-spaces

Authors 1

Affiliations

  1. Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas 72701, U.S.A.

Abstract

The p-envelope of an F-space is the p-convex analogue of the Fréchet envelope. We show that if an F-space is locally bounded (i.e., a quasi-Banach space) with separating dual, then the p-envelope coincides with the Banach envelope only if the space is already locally convex. By contrast, we give examples of F-spaces with are not locally bounded nor locally convex for which the p-envelope and the Fréchet envelope are the same.

Keywords

p-envelope, non-locally convex F-space, multiplier

Bibliography

  1. A. B. Aleksandrov, Essays on non-locally convex Hardy classes, in: Complex Analysis and Spectral Theory, Lecture Notes in Math. 864, Springer, Berlin 1981, 1-89.
  2. R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in Lp, Astérisque 77 (1980), 11-66.
  3. P. L. Duren, Theory of Hp Spaces, Academic Press, New York 1970.
  4. P. L. Duren, B. W. Romberg and A. L. Shields, Linear functionals on Hp spaces with 0 < p < 1, J. Reine Angew. Math. 238 (1969), 32-60.
  5. C. M. Eoff, Fréchet envelopes of certain algebras of analytic functions, Michigan Math. J. 35 (1988), 413-426.
  6. N. J. Kalton, Analytic functions in non-locally convex spaces and applications, Studia Math. 83 (1986), 275-303.
  7. N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space Sampler, London Math. Soc. Lecture Note Ser. 89, Cambridge Univ. Press, 1984.
  8. J. E. McCarthy, Topologies on the Smirnov class, to appear.
  9. N. Mochizuki, Algebras of holomorphic functions between Hp and N, Proc. Amer. Math. Soc. 105 (1989), 898-902.
  10. M. Nawrocki, Linear functionals on the Smirnov class of the unit ball in n, Ann. Acad. Sci. Fenn. AI 14 (1989), 369-379.
  11. M. Nawrocki, The Fréchet envelopes of vector-valued Smirnov classes, Studia Math. 94 (1989), 163-177.
  12. J. W. Roberts and M. Stoll, Prime and principal ideals in the algebra N⁺, Arch. Math. (Basel) 27 (1976), 387-393; Correction, ibid. 30 (1978), 672.
  13. J. H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187-202.
  14. J. H. Shapiro, Remarks on F-spaces of analytic functions, in: Banach Spaces of Analytic Functions, Lecture Notes in Math. 604, Springer, Berlin 1977, 107-124.
  15. M. Stoll, Mean growth and Taylor coefficients of some topological algebras of analytic functions, Ann. Polon. Math. 35 (1977), 139-158.
  16. N. Yanagihara, Multipliers and linear functionals for the class N⁺, Trans. Amer. Math. Soc. 180 (1973), 449-461.
  17. N. Yanagihara, The containing Fréchet space for the class N⁺, Duke Math. J. 40 (1973), 93-103.
  18. A. I. Zayed, Topological vector spaces of analytic functions, Complex Variables 2 (1983), 27-50.
Pages:
121-134
Main language of publication
English
Received
1990-10-22
Published
1992
Exact and natural sciences