ArticleOriginal scientific text

Title

Generalized Schwarzian derivatives for generalized fractional linear transformations

Authors 1

Affiliations

  1. Department of Pure Mathematics, University of Sydney, Sydney, New South Wales 2006, Australia

Abstract

Generalizations of the classical Schwarzian derivative of complex analysis have been proposed by Osgood and Stowe [12, 13], Carne [5], and Ahlfors [3]. We present another generalization of the Schwarzian derivative over vector spaces.

Bibliography

  1. L. V. Ahlfors, Clifford numbers and Möbius transformations in n, in: Clifford Algebras and their Applications in Mathematical Phisics, J. S. R. Chrisholm and A. K. Common (eds.), NATO Adv. Study Inst. Ser., Ser. C: Math. Phys. Sci., Vol. 183, Reidel, 1986, 167-175.
  2. L. V. Ahlfors, Möbius transformations in n expressed through 2 × 2 matrices of Clifford numbers, Complex Variables 5 (1986), 215-224.
  3. L. V. Ahlfors, Cross-ratios and Schwarzian derivatives in n, preprint.
  4. M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology 3 (1964), 3-38.
  5. K. Carne, The Schwarzian derivative for conformal maps, to appear.
  6. J. Elstrodt, F. Grunewald and J. Mennicke, Vahlen's group of Clifford matrices and Spin-groups, Math. Z. 196 (1987), 369-390.
  7. K. Gross and R. Kunze, Bessel functions and representation theory, II. Holomorphic discrete series and metaplectic representations, J. Funct. Anal. 25 (1977), 1-49.
  8. H. P. Jakobsen, Intertwining differential operators for Mp(n,ℝ) and U(n,n), Trans. Amer. Math. Soc. 246 (1978), 311-337.
  9. H. P. Jakobsen and M. Vergne, Wave and Dirac operators and representations of the conformal group, J. Funct. Anal. 24 (1977), 52-106.
  10. O. Lehto, Univalent Functions and Teichmüller Spaces, Graduate Texts in Math. 109, Springer, 1986.
  11. H. Maass, Automorphe Funktionen von mehreren Veränderlichen und Dirichletsche Reihen, Abh. Math. Sem. Univ. Hamburg 16 (1949), 72-100.
  12. P. Osgood and D. Stowe, The Schwarzian derivative and conformal mapping of Riemannian manifolds, to appear.
  13. P. Osgood and D. Stowe, A generalization of Nehari's univalence criterion, to appear.
  14. I. R. Porteous, Topological Geometry, Cambridge Univ. Press, 1981.
  15. K. Th. Vahlen, Ueber Bewegungen und complexe Zahlen, Math. Ann. 55 (1902), 585-593.
Pages:
29-44
Main language of publication
English
Received
1990-11-20
Published
1992
Exact and natural sciences