PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1991-1992 | 56 | 3 | 303-309
Tytuł artykułu

A simple formula showing L¹ is a maximal overspace for two-dimensional real spaces

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It follows easily from a result of Lindenstrauss that, for any real twodimensional subspace v of L¹, the relative projection constant λ(v;L¹) of v equals its (absolute) projection constant $λ(v) = sup_X λ(v;X)$. The purpose of this paper is to recapture this result by exhibiting a simple formula for a subspace V contained in $L^∞(ν)$ and isometric to v and a projection $P_∞$ from C ⊕ V onto V such that $∥P_∞∥ = ∥P₁∥$, where P₁ is a minimal projection from L¹(ν) onto v. Specifically, if $P₁ = ∑_{i=1}^2 U_i ⊗ v_i$, then $P_∞ = ∑_{i=1}^2 u_i ⊗ V_i$, where $dV_i = 2v_i dν$ and $dU_i = -2u_i dν$.
Słowa kluczowe
Rocznik
Tom
56
Numer
3
Strony
303-309
Opis fizyczny
Daty
wydano
1992
otrzymano
1991-02-15
poprawiono
1991-07-29
Twórcy
  • Department of Mathematics, University of California, Riverside Riverside, California 92521, U.S.A.
Bibliografia
  • [1] B. L. Chalmers, Absolute projection constant of the linear functions in a Lebesgue space, Constr. Approx. 4 (1988), 107-110.
  • [2] B. L. Chalmers and F. T. Metcalf, The determination of minimal projections and extensions in L¹, Trans. Amer. Math. Soc. 329 (1992), 289-305.
  • [3] B. L. Chalmers, F. T. Metcalf, B. Shekhtman and Y. Shekhtman, The projection constant of a two-dimensional real Banach space is no greater than 4/3, submitted.
  • [4] C. Franchetti and E. W. Cheney, Minimal projections in 𝓛₁-spaces, Duke Math. J. 43 (1976), 501-510.
  • [5] J. Lindenstrauss, On the extension of operators with a finite-dimensional range, Illinois J. Math. 8 (1964), 488-499.
  • [6] D. Yost, L₁ contains every two-dimensional normed space, Ann. Polon. Math. 49 (1988), 17-19.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-apmv56z3p303bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.