Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1991-1992 | 56 | 3 | 233-242

Tytuł artykułu

Structure of mixing and category of complete mixing for stochastic operators

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Let T be a stochastic operator on a σ-finite standard measure space with an equivalent σ-finite infinite subinvariant measure λ. Then T possesses a natural "conservative deterministic factor" Φ which is the Frobenius-Perron operator of an invertible measure preserving transformation φ. Moreover, T is mixing ("sweeping") iff φ is a mixing transformation. Some stronger versions of mixing are also discussed. In particular, a notion of *L¹-s.o.t. mixing is introduced and characterized in terms of weak compactness. Finally, it is shown that most stochastic operators are completely mixing and that the same holds for convolution stochastic operators on l.c.a. groups.

Słowa kluczowe

Rocznik

Tom

56

Numer

3

Strony

233-242

Opis fizyczny

Daty

wydano
1992
otrzymano
1990-08-01
poprawiono
1991-11-04

Twórcy

  • Institute of Mathematics, Technical University of Wrocław Wybrzeże, Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Institute of Mathematics, Technical University of Wrocław Wybrzeże, Wyspiańskiego 27, 50-370 Wrocław, Poland

Bibliografia

  • [1] J. Aaronson, M. Lin and B. Weiss, Mixing properties of Markov operators and ergodic transformations, and ergodicity of cartesian products, Israel J. Math. 33 (1979), 198-224.
  • [2] W. Bartoszek, On the residuality of mixing by convolution probabilities, ibid., to appear.
  • [3] J. R. Choksi and V. S. Prasad, Approximation and Baire category theorems in ergodic theory, in: Proc. Sherbrooke Workshop Measure Theory (1982), Lecture Notes in Math. 1033, Springer, 1983, 94-113.
  • [4] S. R. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand-Reinhold, New York 1969.
  • [5] S. R. Foguel, Singular Markov operators, Houston J. Math. 11 (1985), 485-489.
  • [6] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 2, Springer, Berlin 1970.
  • [7] A. Iwanik, Baire category of mixing for stochastic operators, in: Proc. Measure Theory Conference, Oberwolfach 1990, Rend. Circ. Mat. Palermo (2), to appear.
  • [8] B. Jamison and S. Orey, Markov chains recurrent in the sense of Harris, Z. Wahrsch. Verw. Gebiete 8 (1967), 41-48.
  • [9] T. Komorowski and J. Tyrcha, Asymptotic properties of some Markov operators, Bull. Polish Acad. Sci. Math. 37 (1989), 221-228.
  • [10] U. Krengel and L. Sucheston, On mixing in infinite measure spaces, Z. Wahrsch. Verw. Gebiete 13 (1969), 150-164.
  • [11] M. Lin, Mixing for Markov operators, ibid. 19 (1971), 231-242.
  • [12] M. Lin, Convergence of the iterates of a Markov operator, ibid. 29 (1974), 153-163.
  • [13] D. Ornstein and L. Sucheston, An operator theorem on L₁ convergence to zero with applications to Markov kernels, Ann. Math. Statist. 41 (1970), 1631-1639.
  • [14] J. Rosenblatt, Ergodic and mixing random walks on locally compact groups, Math. Ann. 257 (1981), 31-42.
  • [15] U. Sachdeva, On category of mixing in infinite measure spaces, Math. Systems Theory 5 (1978), 319-330.
  • [16] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, New York 1974.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-apmv56z3p233bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.