ArticleOriginal scientific text

Title

Equivariant maps of joins of finite G-sets and an application to critical point theory

Authors 1

Affiliations

  1. Institute of Mathematics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Abstract

A lower estimate is proved for the number of critical orbits and critical values of a G-invariant C¹ function f:Sn, where G is a finite nontrivial group acting freely and orthogonally on n+1 {0}. Neither Morse theory nor the minimax method is applied. The proofs are based on a general version of Borsuk's Antipodal Theorem for equivariant maps of joins of G-sets.

Keywords

join, group actions, Borsuk's Antipodal Theorem, critical points

Bibliography

  1. T. Bartsch, Critical orbits of invariant functionals and symmetry breaking, For- schungsschwerpunkt Geometrie, Universität Heidelberg, Heft Nr 34, 1988.
  2. V. Benci and F. Pacella, Morse theory for symmetric functionals on the sphere and an application to a bifurcation problem, Nonlinear Anal. 9 (1985), 763-771.
  3. G. Bredon, Introduction to Compact Transformation Groups, Academic Press, 1972.
  4. S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer, 1982.
  5. K. Deimling, Nonlinear Functional Analysis, Springer, 1985.
  6. E. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), 139-174.
  7. A. Granas and J. Dugundji, Fixed Point Theory, PWN, Warszawa 1982.
  8. M. Hall, The Theory of Groups, Macmillan, New York 1959.
  9. W. Krawcewicz and W. Marzantowicz, Lusternik-Schnirelmann method for functionals invariant with respect to a finite group action, preprint, 1988.
  10. W. Krawcewicz and W. Marzantowicz, Some remarks on the Lusternik-Schnirelmann method for non-differentiable functionals invariant with respect to a finite group action, preprint, 1988.
  11. J. Milnor, Construction of universal bundles, II, Ann. of Math. 63 (1956), 430-436.
  12. R. S. Palais, Critical point theory and the minimax principle, in: Proc. Sympos. Pure Math. 15, Amer. Math. Soc., 1970, 185-212.
  13. R. S. Palais, Lusternik-Schnirelmann theory on Banach manifolds, Topology 5 (1966), 115-132.
  14. P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math. 65, Amer. Math. Soc., 1984.
  15. V. A. Rokhlin and D. B. Fuks, An Introductory Course in Topology. Geometric Chapters, Nauka, Moscow 1977 (in Russian).
  16. J. A. Wolf, Spaces of Constant Curvature, University of California, Berkeley, Calif., 1972.
Pages:
195-211
Main language of publication
English
Received
1991-02-15
Accepted
1991-03-30
Published
1992
Exact and natural sciences