ArticleOriginal scientific text
Title
Equivariant maps of joins of finite G-sets and an application to critical point theory
Authors 1
Affiliations
- Institute of Mathematics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Abstract
A lower estimate is proved for the number of critical orbits and critical values of a G-invariant C¹ function , where G is a finite nontrivial group acting freely and orthogonally on . Neither Morse theory nor the minimax method is applied. The proofs are based on a general version of Borsuk's Antipodal Theorem for equivariant maps of joins of G-sets.
Keywords
join, group actions, Borsuk's Antipodal Theorem, critical points
Bibliography
- T. Bartsch, Critical orbits of invariant functionals and symmetry breaking, For- schungsschwerpunkt Geometrie, Universität Heidelberg, Heft Nr 34, 1988.
- V. Benci and F. Pacella, Morse theory for symmetric functionals on the sphere and an application to a bifurcation problem, Nonlinear Anal. 9 (1985), 763-771.
- G. Bredon, Introduction to Compact Transformation Groups, Academic Press, 1972.
- S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer, 1982.
- K. Deimling, Nonlinear Functional Analysis, Springer, 1985.
- E. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), 139-174.
- A. Granas and J. Dugundji, Fixed Point Theory, PWN, Warszawa 1982.
- M. Hall, The Theory of Groups, Macmillan, New York 1959.
- W. Krawcewicz and W. Marzantowicz, Lusternik-Schnirelmann method for functionals invariant with respect to a finite group action, preprint, 1988.
- W. Krawcewicz and W. Marzantowicz, Some remarks on the Lusternik-Schnirelmann method for non-differentiable functionals invariant with respect to a finite group action, preprint, 1988.
- J. Milnor, Construction of universal bundles, II, Ann. of Math. 63 (1956), 430-436.
- R. S. Palais, Critical point theory and the minimax principle, in: Proc. Sympos. Pure Math. 15, Amer. Math. Soc., 1970, 185-212.
- R. S. Palais, Lusternik-Schnirelmann theory on Banach manifolds, Topology 5 (1966), 115-132.
- P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math. 65, Amer. Math. Soc., 1984.
- V. A. Rokhlin and D. B. Fuks, An Introductory Course in Topology. Geometric Chapters, Nauka, Moscow 1977 (in Russian).
- J. A. Wolf, Spaces of Constant Curvature, University of California, Berkeley, Calif., 1972.