ArticleOriginal scientific text

Title

On the solvability of nonlinear elliptic equations in Sobolev spaces

Authors 1

Affiliations

  1. Institute of Mathematics University of Łódź Banacha 22 90-238 Łódź, Poland

Abstract

We consider the existence of solutions of the system (*) P(D)ul=F(x,(αu)), l = 1,...,k, xn (u=(u¹,...,uk)) in Sobolev spaces, where P is a positive elliptic polynomial and F is nonlinear.

Bibliography

  1. S. N. Bernstein, Sur les équations du calcul des variations, Ann. Sci. École Norm. Sup. 29 (1912), 431-485.
  2. F. E. Browder, Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type, in: Contributions to Nonlinear Functional Analysis, E. H. Zarantonello (ed.), Academic Press, New York 1971, 425-500.
  3. P. Fijałkowski, On the equation x''(t) = F(t,x(t)) in the Sobolev space H¹(ℝ), Ann. Polon. Math. 53 (1991), 29-34.
  4. A. Granas, R. Guenther and J. Lee, Nonlinear boundary value problems for ordinary differential equations, Dissertationes Math. 244 (1985).
  5. L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer, Berlin 1983.
  6. M. A. Krasnosel'skiĭ, P. P. Zabreĭko, E. I. Pustyl'nik and P. E. Sobolevskiĭ, Integral Operators in Spaces of Summable Functions, Nauka, Moscow 1966 (in Russian).
  7. N. G. Lloyd, Degree Theory, Cambridge Univ. Press, 1978.
  8. B. Przeradzki, On the solvability of singular BVPs for second-order ordinary differential equations, Ann. Polon. Math. 50 (1990), 279-289.
Pages:
149-156
Main language of publication
English
Received
1990-08-01
Accepted
1991-01-15
Published
1992
Exact and natural sciences