ArticleOriginal scientific text

Title

The fixed points of holomorphic maps on a convex domain

Authors 1

Affiliations

  1. Department of Mathematics, Pedagogical Institute of Ha Noi N°I, Ha Noi, Viet Nam

Abstract

We give a simple proof of the result that if D is a (not necessarily bounded) hyperbolic convex domain in n then the set V of fixed points of a holomorphic map f:D → D is a connected complex submanifold of D; if V is not empty, V is a holomorphic retract of D. Moreover, we extend these results to the case of convex domains in a locally convex Hausdorff vector space.

Bibliography

  1. T. Barth, Taut and tight manifolds, Proc. Amer. Math. Soc. 24 (1970), 429-431.
  2. T. Barth, Convex domains and Kobayashi hyperbolicity, ibid. 79 (1980), 556-558.
  3. S. Dineen, R. Timoney et J.-P. Vigué, Pseudodistances invariantes sur les domaines d'un espace localement convexe, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12 (1985), 515-529.
  4. R. E. Edwards, Functional Analysis, Holt, Rinehart and Winston, New York 1965.
  5. G. Fischer, Complex Analytic Geometry, Lecture Notes in Math. 538, Springer, 1976.
  6. T. Franzoni and E. Vesentini, Holomorphic Maps and Invariant Distances, North-Holland Math. Stud. 40, Amsterdam 1980.
  7. P. Kiernan, On the relations between taut, tight and hyperbolic manifolds, Bull. Amer. Math. Soc. 76 (1970), 49-51.
  8. J. L. Kelley, General Topology, Van Nostrand, New York 1957.
  9. S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, New York 1970.
  10. L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474.
  11. L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257-261.
  12. H. L. Royden and P. Wong, Carathéodory and Kobayashi metrics on convex domains, to appear.
  13. E. Vesentini, Complex geodesics, Compositio Math. 44 (1981), 375-394.
  14. E. Vesentini, Complex geodesics and holomorphic maps, in: Sympos. Math. 26, Inst. Naz. Alta Mat. Fr. Severi, 1982, 211-230.
  15. J.-P. Vigué, Points fixes d'applications holomorphes dans un domaine borné convexe de n, Trans. Amer. Math. Soc. 289 (1985), 345-353.
Pages:
143-148
Main language of publication
English
Received
1990-05-09
Accepted
1990-10-10
Published
1992
Exact and natural sciences