ArticleOriginal scientific text
Title
The fixed points of holomorphic maps on a convex domain
Authors 1
Affiliations
- Department of Mathematics, Pedagogical Institute of Ha Noi N°I, Ha Noi, Viet Nam
Abstract
We give a simple proof of the result that if D is a (not necessarily bounded) hyperbolic convex domain in then the set V of fixed points of a holomorphic map f:D → D is a connected complex submanifold of D; if V is not empty, V is a holomorphic retract of D. Moreover, we extend these results to the case of convex domains in a locally convex Hausdorff vector space.
Bibliography
- T. Barth, Taut and tight manifolds, Proc. Amer. Math. Soc. 24 (1970), 429-431.
- T. Barth, Convex domains and Kobayashi hyperbolicity, ibid. 79 (1980), 556-558.
- S. Dineen, R. Timoney et J.-P. Vigué, Pseudodistances invariantes sur les domaines d'un espace localement convexe, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12 (1985), 515-529.
- R. E. Edwards, Functional Analysis, Holt, Rinehart and Winston, New York 1965.
- G. Fischer, Complex Analytic Geometry, Lecture Notes in Math. 538, Springer, 1976.
- T. Franzoni and E. Vesentini, Holomorphic Maps and Invariant Distances, North-Holland Math. Stud. 40, Amsterdam 1980.
- P. Kiernan, On the relations between taut, tight and hyperbolic manifolds, Bull. Amer. Math. Soc. 76 (1970), 49-51.
- J. L. Kelley, General Topology, Van Nostrand, New York 1957.
- S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, New York 1970.
- L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474.
- L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257-261.
- H. L. Royden and P. Wong, Carathéodory and Kobayashi metrics on convex domains, to appear.
- E. Vesentini, Complex geodesics, Compositio Math. 44 (1981), 375-394.
- E. Vesentini, Complex geodesics and holomorphic maps, in: Sympos. Math. 26, Inst. Naz. Alta Mat. Fr. Severi, 1982, 211-230.
- J.-P. Vigué, Points fixes d'applications holomorphes dans un domaine borné convexe de
, Trans. Amer. Math. Soc. 289 (1985), 345-353.