ArticleOriginal scientific text
Title
On the density of extremal solutions of differential inclusions
Authors 1, 2
Affiliations
- Dipartimento di Matematica, Università di Roma II, via Fontanile di Carcaricola, 00133 Roma, Italy
- Istituto di Matematica, Università di Siena, via del Capitano 15, 53100 Siena, Italy
Abstract
An existence theorem for the cauchy problem (*) ẋ ∈ ext F(t,x), x(t₀) = x₀, in banach spaces is proved, under assumptions which exclude compactness. Moreover, a type of density of the solution set of (*) in the solution set of ẋ ∈ f(t,x), x(t₀) = x₀, is established. The results are obtained by using an improved version of the baire category method developed in [8]-[10].
Bibliography
- A. Antosiewicz and A. Cellina, Continuous selections and differential relations, J. Differential Equations 19 (1975), 386-398.
- J. P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin 1984.
- S. Bahi, Quelques propriétés topologiques de l'ensemble des solutions d'une classe d'équations différentielles multivoques (II), Séminaire d'Analyse Convexe, Montpellier, 1983, exposé No. 4.
- A. Bressan and G. Colombo, Generalized Baire category and differential inclusions in Banach spaces, J. Differential Equations 76 (1988), 135-158.
- C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, Berlin 1977.
- G. Choquet, Lectures on Analysis, Benjamin, Reading 1969.
- P. V. Chuong, Un résultat d'existence de solutions pour des équations différentielles multivoques, C. R. Acad. Sci. Paris 301 (1985), 399-402.
- F. S. De Blasi and G. Pianigiani, A Baire category approach to the existence of solutions of multivalued differential equations in Banach spaces, Funkcial. Ekvac. (2) 25 (1982), 153-162.
- F. S. De Blasi and G. Pianigiani, The Baire category method in existence problems for a class of multivalued differential equations with nonconvex right hand side, Funkcial. Ekvac. 28 (1985), 139-156.
- F. S. De Blasi and G. Pianigiani, Differential inclusions in Banach spaces, J. Differential Equations 66 (1987), 208-229.
- A. F. Filippov, The existence of solutions of generalized differential equations, Math. Notes 10 (1971), 608-611.
- A. N. Godunov, Peano's theorem in Banach spaces, Funktsional. Anal. i Prilozhen. 9 (1) (1974), 59-60 (in Russian).
- H. Kaczyński and C. Olech, Existence of solutions of orientor fields with nonconvex right hand side, Ann. Polon. Math. 29 (1974), 61-66.
- N. S. Papageorgiou, On the solution set of differential inclusions in Banach spaces, Appl. Anal. 25 (1987), 319-329.
- N. S. Papageorgiou, On measurable multifunctions with applications to random multivalued equations, Math. Japon. 32 (1987), 437-464.
- G. Pianigiani, On the fundamental theory of multivalued differential equations, J. Differential Equations 25 (1977), 30-38.
- A. A. Tolstonogov, On differential inclusions in Banach spaces, Soviet Math. Dokl. 20 (1979), 186-190.