ArticleOriginal scientific text

Title

Interpolation d'opérateurs entre espaces de fonctions holomorphes

Authors 1

Affiliations

  1. Laboratoire d'Analyse Complexe et d'Analyse Fonctionnelle, Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse Cedex, France

Abstract

Let K be a compact subset of an hyperconvex open set Dn, forming with D a Runge pair and such that the extremal p.s.h. function ω(·,K,D) is continuous. Let H(D) and H(K) be the spaces of holomorphic functions respectively on D and K equipped with their usual topologies. The main result of this paper contains as a particular case the following statement: if T is a continuous linear map of H(K) into H(K) whose restriction to H(D) is continuous into H(D), then the restriction of T to H(Dα) is a continuous linear map of H(Dα) into H(Dα), ∀α ∈ ]0,1[ where Dα={zD:ω(z,D,K)<α}.

Keywords

interpolation of operators, spaces of analytic functions, common Schauder bases

Bibliography

  1. [B.T.] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40.
  2. [B] S. Bergman, The Kernel Function and Conformal Mapping, Math. Surveys 5, Amer. Math. Soc., 1970.
  3. [L.P.] J. L. Lions et J. Peetre, Sur une classe d'espaces d'interpolation, Publ. Math. I.H.E.S. 19 (1964), 4-68.
  4. [MA] H. Mascart, Sur quelques opérateurs linéaires différentiels, Ann. Fac. Sci. Toulouse 24 (1960), 5-73.
  5. [N] Nguyen Thanh Van, Bases de Schauder dans certains espaces de fonctions holomorphes, Ann. Inst. Fourier (Grenoble) 22 (2) (1972), 169-253.
  6. [ZA-1,2] V. P. Zakharyuta, Fonctions plurisousharmoniques extrémales, échelles hilbertiennes et isomorphismes d'espaces de fonctions analytiques de plusieurs variables complexes I, II, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 19 (1974), 133-157; 21 (1974), 65-83 (en russe).
  7. [ZE] A. Zeriahi, Bases de Schauder et isomorphismes d'espaces de fonctions holomorphes, C. R. Acad. Sci. Paris 310 (1990), 691-694.
Pages:
97-102
Main language of publication
French
Received
1991-01-02
Published
1991
Exact and natural sciences