ArticleOriginal scientific text
Title
A note on integral representation of Feller kernels
Authors 1
Affiliations
- Institute of Mathematics, Technical University of Wrocław, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Abstract
We consider integral representations of Feller probability kernels from a Tikhonov space X into a Hausdorff space Y by continuous functions from X into Y. From the existence of such a representation for every kernel it follows that the space X has to be 0-dimensional. Moreover, both types of representations coincide in the metrizable case when in addition X is compact and Y is complete. It is also proved that the representation of a single kernel is equivalent to the existence of some non-direct product measure on the product space .
Keywords
Feller kernel, integral representation
Bibliography
- R. M. Blumenthal and H. H. Corson, On continuous collections of measures, Ann. Inst. Fourier (Grenoble) 20 (2) (1970), 193-199.
- R. M. Blumenthal and H. H. Corson, On continuous collections of measures, in: Proc. of the Sixth Berkeley Sympos. on Math. Statistics and Probability, Vol. II, Berkeley and Los Angeles, Univ. of Calif. Press, 1972, 33-40.
- N. Ghoussoub, An integral representation of randomized probabilities and its applications, in: Séminaire de Probabilités XVI, Lecture Notes in Math. 920, Springer, Berlin 1982, 519-543.
- A. Iwanik, Integral representations of stochastic kernels, in: Aspects of Positivity in Functional Analysis, R. Nagel, U. Schlotterbeck and M. P. H. Wolff (eds.), Elsevier, 1986, 223-230.
- Y. Kifer, Ergodic Theory of Random Transformations, Progr. Probab. Statist. 10, Birkhäuser, Boston 1986.