ArticleOriginal scientific text
Title
On two new functional equations for generalized Joukowski transformations
Authors 1, 2
Affiliations
- Department of Mathematics, Pedagogical University of Kraków, Podchorążych 2, 30-084 Kraków, Poland
- Department of Pure Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Abstract
The purpose of this paper is to solve two functional equations for generalized Joukowski transformations and to give a geometric interpretation to one of them. Here the Joukowski transformation means the function of a complex variable z.
Bibliography
- J. Aczél, Review for [6], Zentralblatt für Math. 139 (1968), 97.
- J. Aczél and H. Haruki, Commentaries on Hille's papers. Chapter 1. Functional equations, in: E. Hille, Classical Analysis and Functional Analysis. Selected Papers, R. Kallman (ed.), MIT Press, Cambridge, Mass., 1975, 651-658.
- L. V. Ahlfors, Complex Analysis, 2nd ed., McGraw-Hill, 1966.
- M. Baran, Siciak's extremal function of convex sets in
, Ann. Polon. Math. 48 (1988), 275-280. - M. Baran, A functional equation for the Joukowski transformation, Proc. Amer. Math. Soc. 105 (1989), 423-427.
- H. Haruki, Studies on certain functional equations from the standpoint of analytic function theory, Sci. Rep. Osaka Univ. 14 (1965), 1-40.
- H. Haruki, A functional equation arising from the Joukowski transformation, Ann. Polon. Math. 45 (1985), 185-191.
- H. Haruki, A new functional equation characterizing generalized Joukowski transformations, Aequationes Math. 32 (1987), 327-335.
- G. Salmon, A Treatise on Conic Sections, Chelsea Publ. Co., New York 1957.