ArticleOriginal scientific text

Title

Some applications of minimax and topological degree to the study of the Dirichlet problem for elliptic partial differential equations

Authors 1, 1

Affiliations

  1. Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland

Abstract

This paper treats nonlinear elliptic boundary value problems of the form (1) L[u] = p(x,u) in Ωn, u=Du=...=Dm-1u on ∂Ω in the Sobolev space W0m,2(Ω), where L is any selfadjoint strongly elliptic linear differential operator of order 2m. Using both topological degree arguments and minimax methods we obtain existence and multiplicity results for the above problem.

Bibliography

  1. H. Amann and S. A. Weiss, On the uniqueness of the topological degree, Math. Z. 130 (1973), 39-54.
  2. A. Ambrosetti and G. Mancini, Sharp nonuniqueness results for some nonlinear problems, Nonlinear Anal. 3 (1979), 635-645.
  3. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
  4. K.-C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129.
  5. A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York 1969.
  6. L. Gå rding, Dirichlet's problem for linear elliptic partial differential equations, Math. Scand. 1 (1953), 55-72.
  7. E. M. Landesman and A. C. Lazer, Linear eigenvalues and a nonlinear boundary value problem, Pacific J. Math. 33 (1970), 311-328.
  8. A. C. Lazer and P. J. McKenna, On the number of solutions of a nonlinear Dirichlet problem, J. Math. Anal. Appl. 84 (1981), 282-294.
  9. L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Sciences, New York University, 1974.
  10. R. S. Palais and S. Smale, A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165-171.
  11. W. V. Petryshyn, Variational solvability of quasilinear elliptic boundary value problems at resonance, Nonlinear Anal. 5 (1981), 1095-1108.
  12. P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math. 65, Amer. Math. Soc., Providence, R.I., 1986.
  13. M. Struve, A note on a result of Ambrosetti and Mancini, Ann. Mat. Pura Appl. 131 (1982), 107-115.
  14. M. Vaĭnberg, On the continuity of some operators of special type, Dokl. Akad Nauk SSSR 73 (1950), 253-255 (in Russian)
Pages:
49-61
Main language of publication
English
Received
1990-04-02
Accepted
1991-03-02
Published
1991
Exact and natural sciences