ArticleOriginal scientific text

Title

Injective endomorphisms of algebraic and analytic sets

Authors 1, 1

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Abstract

We prove that every injective endomorphism of an affine algebraic variety over an algebraically closed field of characteristic zero is an automorphism. We also construct an analytic curve in ℂ⁶ and its holomorphic bijection which is not a biholomorphism.

Bibliography

  1. J. Ax, A metamathematical approach to some problems in number theory,, in: Proc. Sympos. Pure Math. 20, Amer. Math. Soc., 1971, 161-190.
  2. A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-203.
  3. A. Borel, Injective endomorphisms of algebraic varieties, preprint.
  4. J. Dieudonné, Cours de géométrie algébrique, Vol. II, Presses Univ. France, 1974.
  5. A. Grothendieck, Eléments de géométrie algébrique. IV. Etude locale des schémas et des morphismes de schémas (quatrième partie), Inst. Hautes Etudes Sci. Publ. Math. 32 (1967).
  6. R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, 1965.
  7. S. Łojasiewicz, An Introduction to Complex Analytic Geometry, PWN, Warszawa 1988 (in Polish).
  8. H. Matsumura and P. Monsky, On the automorphisms of hypersurfaces, J. Math. Kyoto Univ. 3 (3) (1964), 347-361.
  9. J.-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble) 6 (1955-56), 1-42.
Pages:
29-35
Main language of publication
English
Received
1989-11-02
Accepted
1991-03-20
Published
1991
Exact and natural sciences