ArticleOriginal scientific text

Title

A geometric approach to the Jacobian Conjecture in ℂ²

Authors 1

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Abstract

We consider polynomial mappings (f,g) of ℂ² with constant nontrivial jacobian. Using the Riemann-Hurwitz relation we prove among other things the following: If g - c (resp. f - c) has at most two branches at infinity for infinitely many numbers c or if f (resp. g) is proper on the level set g-1(0) (resp. f-1(0)), then (f,g) is bijective.

Bibliography

  1. S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Inst. Fund. Research, Bombay 1977.
  2. S. S. Abhyankar and T. T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 149-166.
  3. H. Appelgate and H. Onishi, The Jacobian Conjecture in two variables, J. Pure Appl. Algebra 37 (1985), 215-227.
  4. H. Bass, E. H. Connell and D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (2) (1982), 287-330.
  5. A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-203.
  6. S. A. Broughton, Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math. 92 (1988), 217-241.
  7. J. Chądzyński and T. Krasiński, Properness and the Jacobian Conjecture in ℂ², to appear.
  8. R. Ephraim, Special polars and curves with one place at infinity, in: Proc. Sympos. Pure Math. 40, Vol. I, Amer. Math. Soc., 1983, 353-360.
  9. H. Farkas and I. Kra, Riemann Surfaces, Springer, 1980.
  10. M. Furushima, Finite groups of polynomial automorphisms in the complex affine plane, Mem. Fac. Sci. Kyushu Univ. Ser. A 36 (1) (1982), 85-105.
  11. O.-H. Keller, Ganze Cremona-Transformationen, Monatsh. Math. Phys. 47 (1939), 299-306.
  12. S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, to appear.
  13. T. T. Moh, On analytic irreducibility at ∞ of a pencil of curves, Proc. Amer. Math. Soc. 44 (1974), 22-24.
  14. T. T. Moh, On the Jacobian Conjecture and the configuration of roots, J. Reine Angew. Math. 340 (1983), 140-212.
  15. D. Mumford, Introduction to Algebraic Geometry, Springer, 1976.
  16. Y. Nakai and K. Baba, A generalization of Magnus theorem, Osaka J. Math. 14 (1977), 403-409.
  17. A Nowicki, On the Jacobian Conjecture in two variables, J. Pure Appl. Algebra 50 (1988), 195-207.
  18. K. Rusek and T. Winiarski, Criteria for regularity of holomorphic mappings, Bull. Acad. Polon. Sci. 28 (9-10) (1980), 471-475.
  19. K. Rusek and T. Winiarski, Polynomial automorphisms of n, Univ. Iagel. Acta Math. 24 (1984), 143-149.
Pages:
95-101
Main language of publication
English
Received
1990-08-27
Published
1991
Exact and natural sciences