PL EN

Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo

## Annales Polonici Mathematici

1991 | 55 | 1 | 87-94
Tytuł artykułu

### Integral representations for some weighted classes of functions holomorphic in matrix domains

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In 1945 the first author introduced the classes $H^p(α)$, 1 ≤ p<∞, α > -1, of holomorphic functions in the unit disk 𝔻 with finite integral
(1) ∬_𝔻 |f(ζ)|^p (1-|ζ|²)^α dξ dη < ∞ (ζ=ξ+iη)
and established the following integral formula for $f ∈ H^p(α)$:
(2) f(z) = (α+1)/π ∬_𝔻 f(ζ) ((1-|ζ|²)^α)/((1-zζ̅)^{2+α}) dξdη, z∈ 𝔻 .
We have established that the analogues of the integral representation (2) hold for holomorphic functions in Ω from the classes $L^p(Ω;[K(w)]^α dm(w))$, where:
1) $Ω = {w = (w₁,...,w_n) ∈ ℂ^n: Im w₁ > ∑_{k=2}^n |w_k|²}$, $K(w) = Im w₁ - ∑_{k=2}^n |w_k|²$;
2) Ω is the matrix domain consisting of those complex m × n matrices W for which $I^{(m)} - W·W*$ is positive-definite, and $K(W) = det[I^{(m)} - W·W*]$;
3) Ω is the matrix domain consisting of those complex n × n matrices W for which $Im W = (2i)^{-1} (W - W*)$ is positive-definite, and K(W) = det[Im W].
Here dm is Lebesgue measure in the corresponding domain, $I^{(m)}$ denotes the unit m × m matrix and W* is the Hermitian conjugate of the matrix W.
Słowa kluczowe
EN
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
87-94
Opis fizyczny
Daty
wydano
1991
otrzymano
1990-04-20
Twórcy
autor
• Institute of Mathematics, Armenian Academy of Sciences, Marshal Bagramian Ave., 24-B, 375019 Yerevan, Armenia, U.S.S.R.
autor
• Institute of Mathematics, Armenian Academy of Sciences, Marshal Bagramian Ave., 24-B, 375019 Yerevan, Armenia, U.S.S.R.
Bibliografia
•  R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in $L^p$, Astérisque 77 (1980), 11-66.
•  Š. A. Dautov and G. M. Henkin, The zeroes of holomorphic functions of finite order and weight estimates for solutions of the ∂̅-equation, Mat. Sb. 107 (1978), 163-174 (in Russian).
•  A. È. Djrbashyan and F. A. Shamoyan, Topics in the Theory of $A_α^p$ Spaces, Teubner-Texte zur Math. 105, Teubner, Leipzig 1988.
•  M. M. Djrbashian, On the representability of certain classes of functions meromorphic in the unit disk, Akad. Nauk Armyan. SSR Dokl. 3 (1945), 3-9 (in Russian).
•  M. M. Djrbashian, On the problem of representing analytic functions, Soobshch. Inst. Mat. Mekh. Akad. Nauk Armyan. SSR 2 (1948), 3-40 (in Russian).
•  M. M. Djrbashian, A survey of some achievements of Armenian mathematicians in the theory of integral representations and factorization of analytic functions, Mat. Vesnik 39 (1987), 263-282.
•  M. M. Djrbashian, A brief survey of the results obtained by Armenian mathematicians in the field of factorization of meromorphic functions and its applications, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 23 (6) (1988), 517-545 (in Russian).
•  M. M. Djrbashian and A. È. Djrbashyan, Integral representations for some classes of functions analytic in the half-plane, Dokl. Akad. Nauk SSSR 285 (3) (1985), 547-550 (in Russian).
•  M. M. Djrbashian and A. H. Karapetyan, Integral representations for some classes of functions analytic in a Siegel domain, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 22 (4) (1987), 399-405 (in Russian).
•  M. M. Djrbashian and A. H. Karapetyan, Integral representations in the generalized unit disk, ibid. 24 (6) (1989), 523-546 (in Russian).
•  M. M. Djrbashian and A. H. Karapetyan, Integral representations in the generalized upper half-plane, ibid. 25 (6) (1990) (in Russian).
•  F. Forelli and W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (6) (1974), 593-602.
•  S. G. Gindikin, Analysis in homogeneous domains, Uspekhi Mat. Nauk 19 (4) (1964), 3-92 (in Russian).
•  L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Inostr. Liter., Moscow 1959 (in Russian).
•  M. Stoll, Mean value theorems for harmonic and holomorphic functions on bounded symmetric domains, J. Reine Angew. Math. 290 (1977), 191-198.
Typ dokumentu
Bibliografia
Identyfikatory JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.