ArticleOriginal scientific text
Title
Distortion function and quasisymmetric mappings
Authors 1
Affiliations
- Institute of Mathematics, Polish Academy of Sciences, Łódź Branch, Narutowicza 56, 90-136 Łódź, Poland
Abstract
We study the relationship between the distortion function and normalized quasisymmetric mappings. This is part of a new method for solving the boundary values problem for an arbitrary K-quasiconformal automorphism of a generalized disc on the extended complex plane.
Bibliography
- [AVV1] G. D. Anderson, M. K. Vamanamurphy and M. Vuorinen, Distortion function for plane quasiconformal mappings, Israel J. Math. 62 (1) (1988), 1-16.
- [AVV2] G. D. Anderson, M. K. Vamanamurphy and M. Vuorinen, Functional inequalities for hypergeometric and related functions, Univ. of Auckland, Rep. Ser. 242, 1990.
- [BA] A. Beurling and L. V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142.
- [HP] J. Hersch et A. Pfluger, Généralisation du lemme de Schwarz et du principe de la mesure harmonique pour les fonctions pseudo-analytiques, C. R. Acad. Sci. Paris 234 (1952), 43-45.
- [H] O. Hübner, Remarks on a paper by Ławrynowicz on quasiconformal mappings, Bull. Acad. Polon. Sci. 18 (1980), 183-186.
- [Ke] J. A. Kelingos, Boundary correspondence under quasiconformal mappings, Michigan Math. J. 13 (1966), 235-249.
- [Kr1] J. G. Krzyż, Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. 12 (1987), 19-24.
- [Kr2] J. G. Krzyż, Harmonic analysis and boundary correspondence under quasiconformal mappings, ibid. 14 (1989), 225-242.
- [LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, 2nd ed., Grundlehren Math. Wiss. 126, Springer, New York 1973.
- [W] C.-F. Wang, On the precision of Mori's theorem in Q-mappings, Science Record 4 (1960), 329-333.
- [Z] J. Zając, The distortion function
and quasihomographies, in: Space Quasiconformal Mappings, A collection of surveys 1960-1990, Springer, to appear