ArticleOriginal scientific text

Title

The kaehlerian structures and reproducing kernels

Authors 1, 1

Affiliations

  1. Department of Mathematics, Technical University of Radom, Malczewskiego 29, 26-600 Radom, Poland

Abstract

It is shown that one can define a Hilbert space structure over a kaehlerian manifold with global potential in a natural way.

Keywords

kaehlerian manifold, kaehlerian potential, positive definite function, Bergman function, reproducing kernel

Bibliography

  1. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1956), 337-404.
  2. S. Bergman, The Kernel Function and Conformal Mapping, 2nd ed., Math. Surveys 5, Amer. Math. Soc., 1970.
  3. S. Bergman, Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande, J. Reine Angew. Math. 169 (1933), 1-42.
  4. S. Chern, Complex Manifolds without Potential Theory, 2nd ed., Springer, 1978.
  5. W. Chojnacki, On some holomorphic dynamical systems, Quart. J. Math. Oxford Ser. (2) 39 (1988), 159-172.
  6. S. Janson, J. Peetre and R. Rochberg, Hankel forms and the Fock space, Rev. Mat. Iberoamericana 3 (1987), 61-138.
  7. S. Kobayashi, On the automorphism group of a homogeneous complex manifold, Proc. Amer. Math. Soc. 12 (3) (1961), 359-361.
  8. T. Mazur, Canonical isometry on weighted Bergman spaces, Pacific J. Math. 136 (2) (1989), 303-310.
  9. T. Mazur, On the complex manifolds of Bergman type, preprint.
  10. T. Mazur and M. Skwarczyński, Spectral properties of holomorphic automorphism with fixed point, Glasgow Math. J. 28 (1986), 25-30.
  11. W. Mlak, Introduction to Hilbert Space Theory, PWN, Warszawa 1991.
  12. M. Skwarczyński, Biholomorphic invariants related to the Bergman functions, Dissertationes Math. 173 (1980).
Pages:
221-224
Main language of publication
English
Received
1990-09-14
Published
1991
Exact and natural sciences