ArticleOriginal scientific text
Title
The kaehlerian structures and reproducing kernels
Authors 1, 1
Affiliations
- Department of Mathematics, Technical University of Radom, Malczewskiego 29, 26-600 Radom, Poland
Abstract
It is shown that one can define a Hilbert space structure over a kaehlerian manifold with global potential in a natural way.
Keywords
kaehlerian manifold, kaehlerian potential, positive definite function, Bergman function, reproducing kernel
Bibliography
- N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1956), 337-404.
- S. Bergman, The Kernel Function and Conformal Mapping, 2nd ed., Math. Surveys 5, Amer. Math. Soc., 1970.
- S. Bergman, Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande, J. Reine Angew. Math. 169 (1933), 1-42.
- S. Chern, Complex Manifolds without Potential Theory, 2nd ed., Springer, 1978.
- W. Chojnacki, On some holomorphic dynamical systems, Quart. J. Math. Oxford Ser. (2) 39 (1988), 159-172.
- S. Janson, J. Peetre and R. Rochberg, Hankel forms and the Fock space, Rev. Mat. Iberoamericana 3 (1987), 61-138.
- S. Kobayashi, On the automorphism group of a homogeneous complex manifold, Proc. Amer. Math. Soc. 12 (3) (1961), 359-361.
- T. Mazur, Canonical isometry on weighted Bergman spaces, Pacific J. Math. 136 (2) (1989), 303-310.
- T. Mazur, On the complex manifolds of Bergman type, preprint.
- T. Mazur and M. Skwarczyński, Spectral properties of holomorphic automorphism with fixed point, Glasgow Math. J. 28 (1986), 25-30.
- W. Mlak, Introduction to Hilbert Space Theory, PWN, Warszawa 1991.
- M. Skwarczyński, Biholomorphic invariants related to the Bergman functions, Dissertationes Math. 173 (1980).