We prove that among counterexamples to the Jacobian Conjecture, if there are any, we can find one of lowest degree, the coordinates of which have the form $x^m y^n$ + terms of degree < m+n.
Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland
Bibliografia
[1] S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Inst. Fund. Research, Bombay 1977.
[2] H. Bass, E. H. Connell and D. Wright, The Jacobian Conjecture : reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (2) (1982), 287-330.
[3] R. C. Heitmann, On the Jacobian Conjecture, J. Pure Appl. Algebra 64 (1990), 35-72.
[4] H. W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161-174.