ArticleOriginal scientific text

Title

Jung's type theorem for polynomial transformations of ℂ²

Authors 1

Affiliations

  1. Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland

Abstract

We prove that among counterexamples to the Jacobian Conjecture, if there are any, we can find one of lowest degree, the coordinates of which have the form xmyn + terms of degree < m+n.

Bibliography

  1. S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Inst. Fund. Research, Bombay 1977.
  2. H. Bass, E. H. Connell and D. Wright, The Jacobian Conjecture : reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (2) (1982), 287-330.
  3. R. C. Heitmann, On the Jacobian Conjecture, J. Pure Appl. Algebra 64 (1990), 35-72.
  4. H. W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161-174.
  5. O.-H. Keller, Ganze Cremona-Transformationen, Monatsh. Math. Phys. 47 (1939), 299-306.
  6. L. G. Makar-Limanov, On automorphisms of the free algebra on two generators, Funktsional. Anal. i Prilozhen. 4 (3) (1970), 107-108 (in Russian).
  7. K. Rusek, Polynomial automorphisms, preprint 456, IM PAN, 1989.
  8. A. G. Vitushkin, On polynomial transformations of n, in: Manifolds, Tokyo 1973, Univ. of Tokyo Press, 1975, 415-417.
Pages:
207-212
Main language of publication
English
Received
1990-08-25
Published
1991
Exact and natural sciences