ArticleOriginal scientific text

Title

Representing measures for the disc algebra and for the ball algebra

Authors 1, 2

Affiliations

  1. Division De Matemáticas, Facultad De Ciencias, Universidad Autónoma De Madrid, 28049 Madrid, Spain
  2. Faculteit Wiskunde En Informatica, Universiteit Van Amsterdam, Plantage Muidergracht 24, 1018 Tv Amsterdam, The Netherlands

Abstract

We consider the set of representing measures at 0 for the disc and the ball algebra. The structure of the extreme elements of these sets is investigated. We give particular attention to representing measures for the 2-ball algebra which arise by lifting representing measures for the disc algebra.

Keywords

ball algebra, disc algebra, extreme point, representing measure

Bibliography

  1. [A] E. M. Alfsen, Compact Convex Sets and Boundary Integrals, Ergeb. Math. Grenzgeb. 57, Springer, Berlin 1971.
  2. [BSZ] L. Brown, A. Shields and K. Zeller, On absolutely convergent exponential sums, Trans. Amer. Math. Soc. 96 (1960), 162-183.
  3. [D] R. G. Douglas, On extremal measures and subspace density, Michigan Math. J. 11 (1964), 243-246.
  4. [G] T. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
  5. [Gar] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York 1981.
  6. [HR] K. Hoffman and H. Rossi, Extensions of positive weak*-continuous functionals, Duke Math. J. 37 (1967), 453-466.
  7. [JW] P. Jones and T. Wolff, Hausdorff dimension of harmonic measures in the plane, Acta Math. 161 (1989), 131-144.
  8. [K] P. Koosis, Introduction to Hp Spaces, London Math. Soc. Lecture Note Ser. 40, Cambridge Univ. Press, 1980.
  9. [Ø] B. Øksendal, Null sets for measures orthogonal to R(X), Amer. J. Math. 94 (1972), 331-342.
  10. [P] R. R. Phelps, Lectures an Choquet's Theorem, van Nostrand Math. Stud. 7, van Nostrand, Princeton 1966.
  11. [R] W. Rudin, Function Theory in the Unit Ball of n, Grundlehren Math. Wiss. 241, Springer, Berlin 1980.
  12. [Ry] J. Ryff, The support of representing measures for the disc algebra, in: Function Algebras, F. Birtel (ed.), Scott, Foresman and Company, Glenview 1966.
Pages:
19-35
Main language of publication
English
Received
1990-09-04
Published
1991
Exact and natural sciences