ArticleOriginal scientific text

Title

The homogeneous transfinite diameter of a compact subset of N

Authors 1

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Abstract

Let K be a compact subset of N. A sequence of nonnegative numbers defined by means of extremal points of K with respect to homogeneous polynomials is proved to be convergent. Its limit is called the homogeneous transfinite diameter of K. A few properties of this diameter are given and its value for some compact subsets of N is computed.

Bibliography

  1. H. Alexander, Projective capacity, in: Conference on Several Complex Variables, Ann. of Math. Stud. 100, Princeton Univ. Press, 1981, 3-27.
  2. T. Bloom, L. Bos, C. Christensen and N. Levenberg, Polynomial interpolation of holomorphic functions in and n, preprint, 1989.
  3. M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249.
  4. F. Leja, Sur les séries des polynômes homogènes, Rend. Circ. Mat. Palermo 56 (1932), 419-445.
  5. F. Leja, Theory of Analytic Functions, PWN, Warszawa 1957 (in Polish).
  6. F. Leja, Problèmes à résoudre posés à la Conférence, Colloq. Math. 7 (1959), 153.
  7. N. Levenberg, Monge-Ampère measures associated to extremal plurisubharmonic functions in N, Trans. Amer. Math. Soc. 289 (1) (1985), 333-343.
  8. N. Levenberg and B. A. Taylor, Comparison of capacities in n, in: Proc. Toulouse 1983, Lecture Notes in Math. 1094, Springer, 1984, 162-172.
  9. Nguyen Thanh Van, Familles de polynômes ponctuellement bornées, Ann. Polon. Math. 31 (1975), 83-90.
  10. M. Schiffer and J. Siciak, Transfinite diameter and analytic continuation of functions of two complex variables, Technical Report, Stanford 1961.
  11. J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (2) (1962), 322-357.
  12. J. Siciak, Extremal plurisubharmonic functions and capacities in n, Sophia Kokyuroku in Math. 14, Sophia University, Tokyo 1982.
  13. J. Siciak, Families of polynomials and determining measures, Ann. Fac. Sci. Toulouse 9 (2) (1988), 193-211.
  14. V. P. Zakharyuta, Transfinite diameter, Chebyshev constants and a capacity of a compact set in n, Mat. Sb. 96 (138) (3) (1975), 374-389 (in Russian).
Pages:
191-205
Main language of publication
English
Received
1990-08-19
Published
1991
Exact and natural sciences