ArticleOriginal scientific textThe homogeneous transfinite diameter of a compact subset of
Title
The homogeneous transfinite diameter of a compact subset of
Authors 1
Affiliations
- Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
Abstract
Let K be a compact subset of . A sequence of nonnegative numbers defined by means of extremal points of K with respect to homogeneous polynomials is proved to be convergent. Its limit is called the homogeneous transfinite diameter of K. A few properties of this diameter are given and its value for some compact subsets of is computed.
Bibliography
- H. Alexander, Projective capacity, in: Conference on Several Complex Variables, Ann. of Math. Stud. 100, Princeton Univ. Press, 1981, 3-27.
- T. Bloom, L. Bos, C. Christensen and N. Levenberg, Polynomial interpolation of holomorphic functions in
and , preprint, 1989. - M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249.
- F. Leja, Sur les séries des polynômes homogènes, Rend. Circ. Mat. Palermo 56 (1932), 419-445.
- F. Leja, Theory of Analytic Functions, PWN, Warszawa 1957 (in Polish).
- F. Leja, Problèmes à résoudre posés à la Conférence, Colloq. Math. 7 (1959), 153.
- N. Levenberg, Monge-Ampère measures associated to extremal plurisubharmonic functions in
, Trans. Amer. Math. Soc. 289 (1) (1985), 333-343. - N. Levenberg and B. A. Taylor, Comparison of capacities in
, in: Proc. Toulouse 1983, Lecture Notes in Math. 1094, Springer, 1984, 162-172. - Nguyen Thanh Van, Familles de polynômes ponctuellement bornées, Ann. Polon. Math. 31 (1975), 83-90.
- M. Schiffer and J. Siciak, Transfinite diameter and analytic continuation of functions of two complex variables, Technical Report, Stanford 1961.
- J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (2) (1962), 322-357.
- J. Siciak, Extremal plurisubharmonic functions and capacities in
, Sophia Kokyuroku in Math. 14, Sophia University, Tokyo 1982. - J. Siciak, Families of polynomials and determining measures, Ann. Fac. Sci. Toulouse 9 (2) (1988), 193-211.
- V. P. Zakharyuta, Transfinite diameter, Chebyshev constants and a capacity of a compact set in
, Mat. Sb. 96 (138) (3) (1975), 374-389 (in Russian).