ArticleOriginal scientific text
Title
The super complex Frobenius theorem
Authors 1, 1
Affiliations
- Department of Mathematics, State University of New York, Stony Brook, New York 11794, U.S.A.
Abstract
We formulate and prove a super analogue of the complex Frobenius theorem of Nirenberg.
Keywords
graded-commutative algebras, supermanifolds, Levi flat super CR structure, locally direct sheaf, super real integrable distribution, super complex Frobenius structure, nilpotent element, derivations
Bibliography
- M. Eastwood and C. LeBrun, Thickening and supersymmetric extensions of complex manifolds, Amer. J. Math. 108 (1986), 1177-1192.
- P. Freund, Introduction to Supersymmetry, Cambridge Monographs Math. Phys., Cambridge 1986.
- C. D. Hill and S. R. Simanca, Newlander-Nirenberg theorem on supermanifolds with boundary, preprint, 1990.
- B. Kostant, Graded manifolds, graded Lie algebras, and prequantization, in: Lecture Notes in Math. 570, Springer, 1977, 177-306.
- C. LeBrun and M. Rothstein, Moduli of super Riemann surfaces, Comm. Math. Phys. 117 (1988), 159-176.
- D. A. Leites, Introduction to the theory of supermanifolds, Russian Math. Surveys 35 (1980), 3-57.
- Yu. I. Manin, Gauge Field Theory and Complex Geometry, Grundlehren Math. Wiss. 289, Springer, 1988 (Russian original published by Nauka, Moscow 1984).
- A. McHugh, A Newlander-Nirenberg theorem for super-manifolds, J. Math. Phys. 30 (5) (1989), 1039-1042.
- L. Nirenberg, A Complex Frobenius Theorem, Seminars on Analytic Functions, Vol. 1, Institute of Advanced Study, Princeton 1958.