ArticleOriginal scientific text
Title
Norm and Taylor coefficients estimates of holomorphic functions in balls
Authors 1, 2
Affiliations
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Korea Institute of Technology, 400 Gusong-Dong, Chung-Ku, Taejon, Korea 300-31, U.S.A.
Abstract
A classical result of Hardy and Littlewood states that if is in , 0 < p ≤ 2, of the unit disk of ℂ, then where is a positive constant depending only on p. In this paper, we provide an extension of this result to Hardy and weighted Bergman spaces in the unit ball of , and use this extension to study some related multiplier problems in .
Bibliography
- F. Beatrous and J. Burbea, Holomorphic Sobolev spaces on the ball, Dissertationes Math. 276 (1989).
- R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635.
- P. L. Duren, Theory of
Spaces, Academic Press, New York 1970. - P. L. Duren and A. L. Shields, Properties of
(0 < p < 1) and its containing Banach space, Trans. Amer. Math. Soc. 141 (1969), 255. - P. L. Duren and A. L. Shields,Coefficient multipliers of
and spaces, Pacific J. Math. 32 (1970), 69-78. - T. M. Flett, On the rate of growth of mean values of holomorphic and harmonic functions, Proc. London Math. Soc. 20 (1970), 749.
- F. Forelli and W. Rudin, Projections on the spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593-602.
- G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. Oxford Ser. 12 (1942), 221-256.
- A. Korányi and S. Vagi, Singular integrals in homogeneous spaces and some problems of classical analysis, Ann. Scuola Norm. Sup. Pisa 25 (1971), 575-648.
- E. M. Stein and G. Weiss, On the interpolation of analytic families of operators acting on
spaces, Tôhoku Math. J. (2) 9 (1957), 318-339.